
A DATA-MANAGEMENT SYSTEM FOR DETAILED AREAL INTERPRETIVE DATA

By Carmelo F. Ferrigno

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 86-4091

Denver, Colorado
1986

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL MODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information
write to:

District Chief
U.S. Geological Survey
Water Resources Division
Box 25046, Mail Stop 415
Denver Federal Center
Denver, CO 80225

Copies of this report can
be purchased from:

U.S. Geological Survey
Books and Open-File Reports
Federal Center, Bldg. 41
Box 25425
Denver, CO 80225
[Telephone: (303) 236-7476]

CONTENTS

Page

Abstract-- -- - -- ---- - - ---- 1
Int roduc ti on-------------------- ______________________________________ i
Purpose and scope--------------- -------------------------------------- 5
Structure of the data-management system--------------------------------- 5

Data-base structure-- 5
Data-storage levels-- 6
Statistics 10
Data updating--------------------------- ------------------------- IQ
System portability---------------------- ------------------------- n

Data generation--- 11
Data editing------ --- 12
Types of data to be stored--------------------------------------- 12

Data loading----------- ---- ___ 13
Data updating- -------------------------- ________________ __________ 13

Proposals-- 14
Move of proposals---------- -------------------------- ________ 14

Data retrieval------------------------------- ------------- __________ 15
Data-base reorganization--------------------- __---_----------------- 16
Application programs--- --- 16

Data manipulation---------- -------- ____________________________ 15
Data transformation-------- -------- ____________________________ 17
Graphics------------------- -------------------------- __________ ig

Summary------- _______ ___ 20
References---- -------------------------- ________________ __________ 21
Supplement I: Data-base dictionary----------------------------- ------ 22
Supplement II: Program-user documentation------------------------------ 28

The edit program--- 28
Input 29
Output 31
Sample procedure---------------------------------- ----- --- 31

The load program-- --- 34
Input 35
Output-- 39
Sample procedure-- 40

The retrieval program-- 41
Input 42
Output-- 43
Sample procedure-- 44

The general-update program--- 45
Input--- 46
Output 47
Sample procedure-- 48

The instant-update program--- 49
Input 50
Output 54
Sample procedure-- 55

The move program--- 59
Input--- 61
Output 61

111

	Page

Sample procedure-- 61
The statistics program-------- ----------------------------------- 53

Input--- 64
Output --- ------- 64
Sample procedure----------- --------------------------------- 64

The reload program--- -- 65
Input--- 66
Output 66
Sample procedure-- 66

The data-transformation program------------------------------------ 67
Criteria for retrieving from data base------------------- --- 68
Model-core determination-------------------------------------- 69
Interpolation techniques--------------------- --------------- 70
Program flow-- 72
Special considerations-- 73
Input and output-- 73
Sample procedure-- 75

The data-manipulation program---------- -------------------------- 77
Input 79
Output 81
Sample procedure-- 82

The graphics program--- 84
Input 85
Output 87
Sample procedure-- 88

Supplement III: Program-maintenance manual----------------------------- 93
Edit program--- 93
Load program--- 96
Retrieval program-- 97
General-update program--- 97
Instant-update program------------------ ------------------------- 97
Move program-------- --- 98
Statistics program------------------------------ ----------------- 98
Reload program--- 98
Data-transformation program-- 99
Data-manipulation program----------------------- ----------------- 99
Graphics program---- --- 100

Supplement IV: Computer software tape---------------------------------- 101
Physical characteristics of the magnetic tape---------------------- 101
Tape contents-------------------------- -------------------------- 101

FIGURES

Page
Figure 1. High Plains aquifer and test areas in Nebraska and Texas------ 2

2. Flowchart of data-management system--------------------------- 4
3. Schematic showing structure of the data base for the four

possible densities-- 7

IV

Page

Figure 4. Geographic area of the data-base levels----------------------- 8

5. Hypothetical model grid overlaid on the data-base grid-------- 19
6. Arrangement of 6-second block schema items in a 1-minute

block 27

TABLES

Table 1. Data-base dictionary--- 23
2. Data-base programs and supporting files------------ ---------- 102

CONVERSION FACTORS

For those readers who prefer to use metric units rather than inch-pound
units, the conversion factors for the terms used in this report are listed
below:

Multiply inch-pound units By To obtain SI units

mile (mi) 1.609 kilometer
square mile (mi 2) 2.590 square kilometer

A DATA-MANAGEMENT SYSTEM FOR DETAILED AREAL
INTERPRETIVE DATA

By Carmelo F. Ferrigno

ABSTRACT

A data storage and retrieval system has been developed to organize and
preserve areal interpretive data. This system can be used by any study where
there is a need to store areal interpretive data that generally is presented
in map form. This system provides the capability to grid areal interpretive
data for input to ground-water flow models at any spacing and orientation.
The data storage and retrieval system is designed to be used for studies that
cover small areas such as counties.

The system is built around a hierarchically structured data base con
sisting of related latitude-longitude blocks. The information in the data
base can be stored at different levels of detail, with the finest detail being
a block of 6 seconds of latitude by 6 seconds of longitude (approximately 0.01
square mile). This system was implemented on a mainframe computer using a
hierarchical data-base management system. The computer programs are written
in Fortran IV and PL/1.

This report describes the design and capabilities of the data storage and
retrieval system, and the computer programs that are used to implement the
system. Supplemental sections of the report contain the data dictionary,
user documentation of the data-system software, changes that would need to be
made to use this system for other studies, and information on the computer
software tape.

INTRODUCTION

The Data-Management System (DMS) described by Luckey and Ferrigno (1982)
is designed to be used for large study areas. For example, this system is
appropriate for a study of the High Plains aquifer which includes 174,000 mi 2
in parts of eight States. However, if the study area is small, then that
system may be a poor choice for managing the study area data and the system
described in this report may be a much better choice.

As part of the High Plains Regional Aquifer-System Analysis (RASA), a
detailed study of pumpage and return flow was initiated for two areas in
Nebraska and Texas. The Nebraska test area consisted of Chase, Dundy, and
Perkins Counties. The Texas test area consisted of Castro and Parmer
Counties. These test areas were very small in comparison to the entire High
Plains aquifer as shown in figure 1. Therefore, it would be useful to store
data at a finer detail than is allowed in the original High Plains RASA DMS.
This lead to the development of a second DMS that can store data for a
6-second by 6-second block (latitude-longitude extent, approximately
0.01 mi2). The original DMS can store data for a 1-minute by 1-minute block

39

Figure l.--High Plains aquifer and test areas in Nebraska and Texas.

(approximately 1.0 mi 2). The new DMS is directly modeled after the original
system. The DMS, including the structure of the data base and the computer
programs for data generation, data storage and retrieval, and data
manipulation, can be used for any study where there is a need to store areal
interpretive data that generally is presented in map form.

Records in the data base represent information about a rectangular block.
These records are then related or grouped in a hierarchical, or inverted tree,
structure. A hierarchical data-base structure means that all records are
related to one and only one record at each higher level, and there is one
specially designed record, called the entry or root record, that is at the
highest level of the structure (Martin, 1977).

A schematic representation of the DMS is given in figure 2. Computer
programs for data storage and retrieval interact with the hierarchical data
base and a Data-Base Management System (DBMS). A DBMS is a group of computer
programs for processing organized collections of data. A number of DBMS's
for hierarchical data bases are available. When a DBMS is applied to a
specific data base, a DMS is the result. The DMS consists of data-preparation
programs, programs that interact with the data base and the DBMS, and data-
application programs. This DMS was implemented on an IBM mainframe using the
System 2000 1 DBMS. The programs are written in Fortran IV and PL/1 and make
extensive use of IBM Job Control Language (JCL).

A hierarchical data structure is maintained in the data-preparation and
data-application programs even though these programs use sequential card-image
files for input and output. In fact, the data-preparation and data-
application programs are designed so the programs that interact with the data
base and the DBMS could be bypassed if necessary. Hence, in the early stages
of a study, data preparation and data application can be performed without
actually establishing a data base. The data-preparation programs can then be
used to bring all the available data into a common format and the data-
application programs can be used to check the consistency of the data.

The major use of the DMS is to organize and preserve data and to have
the data easily available for analysis. The DMS can be used to transform data
retrieved from the data base into input for ground-water flow models (Trescott
and others, 1976). The model blocks can be of any size and the grid does not
have to be uniform. In addition, the model grid can be at any orientation to
the data-base grid. If the data in the data base needs revision, the DMS can
be used to temporarily update the data and check the validity of the update
before a permanent revision is made or the DMS can be used to directly update
the data.

The DMS can be used to generate contour maps and three-dimensional views.
The DMS also could be linked to other machine-graphics systems.

1The use of brand names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey.

DATA-

GENERATION
PROCEDURE

EDIT
PROGRAM

RELOAD
PROGRAM

LOAD
PROGRAM

STATISTICS
PROGRAM

MOVE
PROGRAM

DATA-BASE
MANAGEMENT

SYSTEM
AND

DATA BASE

GENERAL-
UPDATE

PROGRAM

INSTANT-
UPDATE

PROGRAM

RETREIVAL
PROGRAM

DATA-

MANIPULATION
PROGRAM

DATA-

TRANSFORMATION
PROGRAM

GROUND-WATER
FLOW

MODEL

Figure 2.--Flowchart of data-management system.

PURPOSE AND SCOPE

This report provides a description of the DMS. In addition, the report
outlines the data-base structure and all major computer programs of the DMS.
This information is needed to adapt this system for use by other studies to
store areal map information.

The report is in two parts: a main body and supplemental sections. The
main body gives a general description of the DMS; the supplemental sections
give all of the details needed to use the DMS or adapt it to another study.
While the main body of the report needs to be read by all potential users of
the system, some users may skip parts of the supplemental sections. The
supplemental sections contain the detailed information that is needed to
actually implement and use the DMS. In addition, those sections will aid
system analysts and programmers who need to adapt part or all of the DMS to
another study and other computer systems.

STRUCTURE OF THE DATA-MANAGEMENT SYSTEM

A complete DMS consists of a data base, procedures for generating,
loading, updating, and retrieving from the data base, and computer programs to
use the retrieved data to accomplish specific tasks. The system described in
this report can be used to manage diverse geographic information for small
study areas. The geographic information usually starts out in map form and is
converted to latitude-longitude-value triplets before being stored in the data
base. Such geographic information can be organized easily within a
hierarchically structured data base.

Data-Base Structure

To store data within a hierarchical structure, elements are needed that
uniquely identify the data stored below the root level. Because the data are
needed for a 6-second by 6-second block, the root-level record could consist
of components describing the latitude, longitude, and study unit (a data-base
component identifying the study area, data-base component 2 in table 1,
Supplement I) associated with the node. Such a structure could require a
large disk-storage area. This would be the most efficient method of storing
the data if all of the data sets are needed in 6-second by 6-second blocks.
However, it is possible that some of the source data may not be available in
sufficient detail to store information for each 6-second by 6-second block
within the study area.

An alternative data-base structure that requires less disk storage
consists of root-level records that contain the study unit and parameter
names. By using a parameter name in conjunction with a study-unit name, the
same parameter could be stored for different study units even if the study
units occupy the same geographical area. Using this structure, the data for
each parameter would be stored at the levels below the root level. The number
of levels are mostly determined by the detail of the source data and the
detail of the data as required for the study. If the source data are sparse,
then the data would most likely not be stored for each 6-second by 6-second

block. There may be sufficient information to store the data for a 1-minute
by 1-minute block, a 10-minute by 10-minute block or a 1-degree by 1-degree
block. This leads to a data-base structure where the detail of the stored
data can vary. The various levels of detail by which data can be stored are
called data densities. Each tree or logical data set would then consist of
the data for one parameter and one study unit. With this structure the size
of the data base is greatly decreased.

The main factor contributing to the decreased size of the data base is
that the latitude and longitude is not stored for each 6-second by 6-second
block. Only one coordinate for each 1-minute by 1-minute block is stored and
from this coordinate, the latitude and longitude of each 6-second by 6-second
block easily can be determined.

Data-Storage Levels

Combining a hierarchically-structured data base with the variable-density
concept leads to flexibility in storing data. For the first High Plains RASA
DMS (Luckey and Ferrigno, 1982), four data densities were chosen to store the
required data: 3-degree data, 1-degree data, 10-minute data, and 1-minute
data. This DMS also has four data densities: 1-degree data, 10-minute data,
1-minute data, and 6-second data. The 3-degree data were eliminated and
6-second data were added to allow the storage of more detailed data. This
arrangement makes it easier to store data for small study areas. In all
instances, the root level of data (level 0) contains, at a minimum, the
parameter and study-unit names. These two names uniquely define a logical
data set. This root-level record also contains other general information
about the parameter. For example, this record contains fields that describe
the units of measurement and statistical information. The number of levels
below level 0 is determined by the data density. The data densities are
numbered 1 through 4, with density 4 having the greatest detail. A schematic
representation of the data-base structure for each density is shown in
figure 3; the corresponding geographical areas that the data represent are
shown in figure 4.

If only one value is needed for each 1-degree by 1-degree block within
the study area, then the data are stored at a density of 1. Density-1 data
are also referred to as 1-degree data. One-degree data consists of one record
at level 0, and a series of level-1 records describing the 1-degree by
1-degree blocks within the study area. The 1-degree data records contain the
value and the latitude and longitude of the southeast corner of the 1-degree
by 1-degree block. The records also contain four statistical components: the
minimum, the maximum, the number of values, and the standard deviation. For
1-degree data, these statistics reflect the data used to compute the single
value for the 1-degree by 1-degree block. These same statistical components
can be found at the lower levels of the data-base structure.

A density-2 parameter has one value for each 10-minute by 10-minute block
within the study area. Density-2 data are also referred to as 10-minute data.
The records for each 10-minute by 10-minute block are stored at level 2 of the
data-base structure. The 10-minute data records are logically connected to
the appropriate 1-degree statistical records. Level 1 contains a record for

DENSITY 1
OR

1-DEGREE
DATA

DENSITY 2
OR

10-MINUTE
DATA

DENSITY 3
OR

1-MINUTE
DATA

DENSITY 4
OR

6-SECOND
DATA

100

Figure 3.--Schematic showing structure of the data base for the four

possible densities.

36°35'48" - 100°35'42'

LEVEL 3
(1-MINUTE BLOCK)

LEVEL 2
(10-MINUTE BLOCK) ^

LEVEL1
(1-DEGREE BLOCK)

LEVEL 0
(STUDY AREA)

102° 99°

Figure 4. Geographic area of the data-base levels.

each 1-degree by 1-degree block within the study area. The 10-minUrte data
records contain the latitude and longitude of the southeast corner of the
block, the value, and the four statistical components. The four statistical
components summarize the data used to compute the single value for the
10-minute by 10-minute block.

A density-3 parameter has one value for each 1-minute by 1-minute block
within the study area. Density-3 data are also referred to as 1-minute data.
The 1-minute data records are placed at level 3 of the data-base structure.
The 1-minute data records are logically connected to the appropriate 10-minute
statistical record at level 2, which, in turn, is logically connected to the
appropriate 1-degree statistical record at level 1. The 1-minute data record
contains the latitude and longitude of the southeast corner of the block, the
value, and the four statistical components. Again, these statistics are
determined from the data used to compute the single value for the 1-minute by
1-minute block.

A density-4 parameter has one value for each 6-second by 6-second block
within the study area. Density-4 data are also referred to as 6-second data.
The 6-second by 6-second blocks are grouped with the appropriate 1-minute by
1-minute block. A record for each of the 1-minute by 1-minute blocks is
stored at level 3 of the data-base structure. This record contains the
latitude and longitude of the southeast corner of the block, and the 100
values for the corresponding 100 6-second by 6-second blocks. The record
also contains 5 statistical components, which, in this case, are determined
from the 100 values.

Logically, the 6-second data are at a level below the 1-minute data,
because they are of greater detail. However, the 6-second data are physically
stored at level 3 for two reasons: (1) To simplify the programming,
especially those programs that load and retrieve the data; and (2) to decrease
the number of logical pointers needed to connect related data. If there were
an actual level 4 in the structure, logical pointers would be needed to
connect records at levels 3 and 4.

As discussed previously, the data base has a hierarchical structure of
four levels with the root-level record containing information that uniquely
identifies a particular parameter with a study area through the use of the
study-unit name. The lowest level or base level at which a parameter's data
resides depends on the density; the actual values will be found only at this
base level. The higher levels contain statistical information that reflect
the data at the lowest level. These statistics are described later.

Four major factors determine the density at which a parameter is stored:
(1) The detail of the data needed for the study, (2) the detail of the source
material (usually a map), (3) the distribution or variance of the data over
the map, and (4) the geographical extent of the data blocks. A large block
is useful for storing data that does not vary greatly; a small block is more
useful for a parameter that varies within a short distance. A 1-degree by
1-degree block is approximately 4,000 mi 2 at 32° latitude and 3,500 mi2 at 42°
latitude. A 10-minute by 10-minute block is approximately 111 mi 2 at 32°
latitude and 97 mi 2 at 42° latitude. A 1-minute by 1-minute block is

approximate^ 1.1 mi2 at 32° latitude and 1.0 mi2 at 42° latitude. Finally,
a 6-second by 6-second block is approximately 0.011 mi2 at 32° latitude and
0.010 mi2 at 42° latitude.

Statistics

Actual values are found at the base level of the data-base structure at
which a parameter is stored. Statistical components also can be found at
this level. These statistics (minimum, maximum, number of values, and
standard deviation) are determined from the data used to compute the single
value for the block. At levels above the base level, the same statistical
components plus the mean value will be found. Statistics at the higher levels
are computed and stored in the data base. For example, 1-minute data has its
actual values stored at level 3 with the four statistical components. At
levels 0 through 2, five statistical components (minimum, maximum, mean,
number of values, and standard deviation) can be found. The statistics at
level 2 are computed by using the values for all of the 1-minute by 1-minute
blocks within the 10-minute by 10-minute block. The statistics at level 1
are computed by using values for all of the 1-minute by 1-minute blocks within
the 1-degree by 1-degree block. Finally, a set of statistics are stored at
level 0 that reflect all of the 1-minute by 1-minute blocks within the study
area. Therefore, the value field can have two meanings: (1) At the base
level of a parameter, the value field is the actual value for that block; and
(2) at higher levels within the structure, the value field is the mean of the
values at the base level within the block.

The main purpose of the statistical information is to have data available
for a particular parameter at more than one level of detail. This provides
the user of the data with several views of the same information.

Data Updating

An important aspect of a DMS is to provide an efficient method of
updating data. There are two methods available to update data within this
data base. The first method can be used to directly replace values for any
data density. This method should be used when it is certain that the new
values are correct. This method is reserved for use by the Data Base
Administrator (DBA). The second method is called the proposal concept. A
proposal is a separate record that can be added to the data-base structure for
a parameter. It consists primarily of a proposed value and the latitude and
longitude of the data block. This proposed value is for a block at the base
level at which a parameter is stored. For example, a proposed value for
10-minute data would correspond to a 10-minute by 10-minute block. A user can
propose a new value for any valid block within the study area.

Proposals reside in a temporary area of the data base; actual data
resides in the permanent area of the data base. When a user proposes a new
value, it does not directly replace the permanent value. General users of
the DMS are not given update authority to the permanent data; replacement of

10

permanent data is a function of the DBA. This updating process is a
compromise between allowing only the DBA to update the data and allowing the
general users to update as desired. The DBA periodically updates the
permanent data by moving selected proposals to the permanent area of the data
base.

System Portability

This system is only directly portable to IBM or IBM-compatible mainframes
that have Fortran IV and PL/1 compilers and the System 2000 DBMS. The DMS
consists of data-preparation programs, programs that interact with the data
base and the DBMS, and data-application programs. The data-preparation
programs and the data-application programs all use the same fixed format for
input and output. This adds to the portability of the DMS, because,
regardless of the DBMS selected, the data-generation and data-application
programs are usable provided that the selected computer is an IBM or
IBM-compatible mainframe that has compilers for the Fortran IV and PL/1
programming languages. It is also possible that extensive changes would be
needed to the IBM JCL depending upon the operating system used by the
computer. The programs that interact with the data base and the DBMS would
require extensive changes if the DBMS were changed. The program changes would
be accomplished more easily if a DBMS based on a hierarchical data-structure
were selected because this system was implemented using the System 2000 DBMS
which uses a hierarchical structure for storing data. If another type of DBMS
were selected (such as a relational DBMS), these program changes would be even
more extensive.

DATA GENERATION

Most of the data that are to be stored in the data base probably would
originate as data portrayed on some type of map. The maps are usually
prepared at various scales and at various levels of detail. After the maps
are obtained or constructed, average values for data-base latitude-longitude
blocks can be obtained by using either automated or manual procedures.

The automated procedures for generating 10- or 1-minute data are
described by Luckey and Ferrigno (1982, p. 15). The programs involved with
these automated procedures have not been converted for use with this data
base. If necessary, these programs could be easily converted for use with
this data base. The programs that are used to generate 10-minute data could
be converted to generate 1-minute data for this data base and the programs
used to generate 1-minute data could be converted to generate 6-second data
for this data base.

For small study areas, a large portion of the data can be generated by a
manual procedure. A manual procedure is chosen when the number of data points
to be generated is small. For this data base, a manual procedure can probably
be used for 10-minute and 1-minute data.

A template showing the 1-minute by 1-minute blocks within a 10-minute by
10-minute block, or the 10-minute by 10-minute blocks within a 1-degree by

11

1-degree block, is constructed. A separate template is needed for each range
of latitude, because width of the blocks decreases to the north. The template
is placed over the map and an average value for each block is picked. Average
values are placed on a coding sheet that already has the latitude and
longitude of the block coded. The data are then ready for data entry and
editing.

Data Editing

Data editing starts before beginning the data-generation process and
ends just before the data are loaded into the data base. The importance of
data editing cannot be overemphasized because the DMS cannot be properly used
without careful selection of the data that are entered into the data base.
Prior to the start of the data-generation process, the source data are
visually examined to determine their accuracy. After the data are generated,
the data are carefully machine-edited prior to loading into the data base.

There are two main reasons for carefully editing data:

1. Data should be accurate. To insure accuracy, a manual-editing
procedure is used. The data are scanned and checked against source
material. In some instances generated data are contoured and then
overlaid on the source map.

2. Data needs to be edited to insure that it can be loaded into the
data base. The Edit Program is used to check data for loading. There
are four main categories of checks performed by the Edit Program:
(1) Syntax checks, (2) logical-order checks, (3) duplication checks,
and (4) latitude and longitude checks. The syntax checks determine if
the records follow standard formats for use in the data-base Load
Program. Logical-order checks insure that records are in the proper
sequence. Duplication checks determine if the data had been previously
loaded into the data base.

Latitude and longitude checks take several forms. Latitude and longitude
are checked to see if they are within the study area. Geographic coordinates
are examined to determine if the assigned values are appropriate for the
record type. For example, the minutes and seconds must be zero if the record
describes a 1-degree by 1-degree block. Finally, the coordinates are examined
to determine if proper 10-minute data records are grouped with the appropriate
1-degree statistical record, and that 1-minute data records are grouped with
the appropriate 10-minute statistical record.

The result of the editing process is a set of data that is ready to be
loaded into the data base. The editing process insures that the data
represent the original map and can be loaded without problem. Additional
information on the Edit Program is provided in Supplement II.

Types of Data to be Stored

The general philosophy in using this DMS is to store only primary data
and use computer programs to calculate secondary data. Examples of primary
data are water-level altitudes and base-of-aquifer altitudes; secondary data

12

would be saturated thickness. By not storing secondary data, it is easier to
keep the data base internally consistent. For example, if saturated thickness
was stored and then modified, that modification would require changes to
either the water-level or base-of-aquifer altitude. If other secondary data,
such as water-level changes and transmissivity were also stored, the results
of the modifications becomes even more complex.

Five general classes of data were stored in the first High Plains RASA
data base and these same classes of data could be stored in this data base.
The five general classes of data are: (1) Aquifer geometry, (2) aquifer and
water characteristics, (3) water levels, (4) climatic data, and (5) land- and
water-use data. Table 1 of the report on the first High Plains RASA data
base (Luckey and Ferrigno, 1982) contains a list of the parameters that were
stored in that data base. It should be noted that it would not be appropriate
to store 1-minute data in this data base that has as many points as the
1-minute data stored in the first High Plains RASA data base. In the first
High Plains RASA data base, only one latitude and longitude coordinate was
stored for each 100 1-minute data points; whereas, in this data base, latitude
and longitude coordinates would have to be stored for each 1-minute data
point.

The use of this DMS is not confined to the storage of data used for
aquifer analysis. The examples used in this report are of data used in the
study of aquifers simply because this system was initially developed for use
in an aquifer study. This DMS is useful for storing and manipulating any
mappable data.

DATA LOADING

The data are loaded into a hierarchical data-base for storage, update,
and retrieval. The loading procedure is dependent upon the DBMS. The DBMS
stores the data and creates appropriate indices to the data. These indices
are useful for updating or retrieving the data. See the documentation for
the Load Program, in Supplement II, for information on the loading procedure
for this DMS.

DATA UPDATING

There are two methods available for updating the data base. The first
method directly updates the data and is reserved for use by the DBA. This
method can be used when the correctness of the updates is known. See the
documentation for the General-Update Program, in Supplement II, for details
about this updating process.

The second method is a two-step process. In the first step, accomplished
through the use of the Instant-Update Program, users propose changes to the
data. In the second step, the DBA replaces the appropriate permanent-values
with the accepted proposed-values using the Move Program. The following
describes these two steps in detail.

13

Proposals

There are three types of proposals that can exist in the data base for
each parameter. When a user initially proposes a change to permanent data, a
record, called a test proposal, is loaded into the data base. The record
contains a flag field that indicates that it is a test proposal. There are
three possible actions that the user can perform upon the test proposal.
First, the proposal can be left in its present state; in this instance, the
test proposal would be removed automatically from the data base after a
predetermined amount of time. Second, the user may decide that the test
proposal is not acceptable as a replacement for the present permanent-value.
The user may then request, through the Instant-Update Program, that the test
proposal be rejected. Once rejected, the proposal appears to the user as no
longer existing within the data base. The Instant-Update Program does not
actually remove the rejected proposal; this function is performed by the Move
Program. The third alternative is to accept the test proposal as the
replacement for the current permanent-value. The Instant-Update Program is
used to flag the test proposal as acceptable, and it then becomes an accepted
proposal. The Instant-Update Program does not actually replace the permanent
value; this task is performed by the Move Program.

A typical application of this update process is using proposals in
conjunction with modeling. As a result of modeling, a user may determine
that a group of permanent values is unacceptable. By using the Instant-Update
Program, the modeler can propose test values for the unacceptable data.
Then, a set of data can be retrieved from the data base for the model area
with the request that test proposals be included in the retrieved data. For
each latitude-longitude block retrieved that has a corresponding test
proposal, the test value will replace the permanent value. This data set can
then be used for modeling. While modeling, the user can use the Instant-
Update Program to mark the test proposals as accepted or rejected, and
possibly add new test proposals.

Thus, through the Instant-Update Program, the user can manipulate test
proposals. These proposals can be added to the data base, or their status
can be changed to rejected or accepted. Using this method, the general user
does not alter the permanent data; hence the integrity of the data base is
maintained. Actual changes to the permanent data are performed by the DBA in
the second step of the update process. Additional information on the Instant-
Update Program is provided in Supplement II.

Move of Proposals

The second step is accomplished by the DBA using the Move Program. For
each parameter, the program performs three functions. First, the program
locates all the rejected proposals and removes them from the data base.
Second, the program locates all the accepted proposals. For each accepted
proposal, the program locates the corresponding permanent data-record and
replaces the present permanent-value with the new accepted-value. The
accepted proposal then is removed from the data base. After all the accepted
proposals have been processed, statistics are recomputed for the entire
parameter. Third, the program locates all test proposals. Any proposals
that have existed for longer than a predetermined amount of time are removed
from the data base.

14

The frequency with which the Move Program is used is dependent on update
activity. The DBA is able to monitor this activity through the use of an
information file that is produced by the Instant-Update Program. This move
process can be done for all parameters or for selected parameters within the
data base in one program execution. Additional information on the Move
Program is provided in Supplement II.

DATA RETRIEVAL

The retrieval procedure is used to extract a set of data from the data
base for use in an application program. There are four specifications
required to describe the data to be retrieved. The first two are the
parameter and study-unit names. With these two names, the Retrieval Program
can pinpoint the location in the data base where the retrieval of data will
begin. The third specification is the level of the retrieval. This value
determines the lowest level in the data-base structure from which data are to
be obtained. Usually this level is the base level at which a parameter
resides. For example, the base level for 1-minute data is level 3. Hence, if
the actual values are required for 1-minute data, a level-3 retrieval needs to
be specified. In some instances, a user may desire only the statistical data
for a particular parameter. This can be done by specifying any level above
the base level. For example, a user may retrieve the 10-minute statistical
records for 1-minute data by specifying a level-2 retrieval. The fourth
specification is the area for which data are needed. This area is described
as a rectangle where the limits of the rectangle are given as minimum and
maximum latitudes and longitudes. This area can be part or all of the study
area. Because geographic coordinates are specified as whole degrees, it is
likely that the retrieved data will be for an area larger than needed.
Available application programs trim the data to the actual area where data
are needed.

The Retrieval Program has one major option: the user may request that
test proposals be included in the retrieved data. This option only can be
used when retrieving data from the base level. With this option, the program
searches for test proposals. Prior to outputting a record, the program
determines if there is a test proposal present that corresponds to the record.
If a test proposal is found, the test value replaces the permanent value in
the retrieved data. If, for a particular record, more than one test proposal
exists, the most recent test proposal is used.

The format of the retrieved data is identical to the format used to
initially load the data into the data base. A discussion of this point can
be found in the section on system portability.

The Retrieval Program is used to produce data for use in application
programs. It is a very simple retrieval process, in that its only purpose is
to extract data that are to be manipulated by another program. This procedure
does not have any options to perform complex retrievals. An example of a
complex retrieval would be to request retrieval of some data, where the values
are greater than a certain value. The DBMS that manages the data base has
facilities for performing complex retrievals, but the format of a DBMS
retrieval is not compatible with the application programs. Additional
information on the Retrieval Program is provided in Supplement II.

15

DATA-BASE REORGANIZATION

After the data base has been updated many times, the tables used to
store the data and other information required by the data base becomes
disorganized and can degrade the efficiency of retrievals and updates. The
Reload Program can then be used by the DBA to reorganize the tables within the
data base. The reorganization of the data base will usually result in the
reduction of the total size of the data base and a reduction in computer time
required to access data. Additional information about the Reload Program is
provided in Supplement II.

APPLICATION PROGRAMS

There are several application programs available that use data retrieved
from the data base. The first program produces mathematical combinations of
data. Its primary purpose is to generate secondary parameters. The second
program is the interface between the data base and ground-water flow models
(Trescott and others, 1976). This program transforms data-base data into a
format for finite-difference model programs. The third program produces data
plots, contour maps, and three-dimensional views of the data.

Data Manipulation

The Data-Manipulation Program is provided to mathematically manipulate
data from the data base using five standard functions. The first function
takes the logarithm of a value in the form:

A*log 10 (X) + C

where A and C are constants and X is the value. The second function
performs an antilogarithm calculation in the form:

A*antilog 10 (X) + C

where A and C are constants and X is the value. The third function performs
a linear combination, including addition and subtraction, in the form:

A*X1 + B*X2 + C

where A, B, and C are constants and XI and X2 are values for different
parameters. The fourth and fifth functions perform multiplication and
division in the forms:

A*X1*X2 + C

A*(X1/X2) + C

where A and C are constants and XI and X2 are values for different
parameters.

16

To add flexibility to the program, the user has the option of bypassing
the standard functions and inputing the expression that will be used to
manipulate the data. This gives the user the opportunity to use many of the
standard mathematical functions such as the trigonametric and hyperbolic
functions. Detailed information on this option may be found in the
documentation for the Data-Manipulation Program.

The primary input data for this program is a set of data in standard
retrieval format. This data can be retrieved from the data base or it can be
the output from a prior execution of the Data-Manipulation Program. The
major use of this program is to generate secondary parameters from the input
data. Secondary parameters are data that are produced from parameters already
stored in the data base. These stored data are termed primary parameters.

Examples of secondary parameters are change in storage and return flow.
To illustrate use of the program, the steps to generate return flow will be
discussed. Return flow is the difference between pumpage and change in
storage (assuming no natural recharge). The required steps are:

1. Multiply water-level change times specific yield (change in storage);
2. Add up pumpage for desired period; and
3. Subtract change in storage from total pumpage.

These steps result in a secondary parameter, called return flow, in standard
load format. In fact, the return-flow parameter could be loaded into the
data base at this point.

The secondary parameters could be stored directly in the data base.
However, this could result in data-management problems. A secondary
parameter, such as change in storage, is dependent on several primary
parameters for its values. Hence, if one or more of the primary parameters
are changed, then changes in the secondary parameter also would occur. This
would result in additional updating of the data base, which would require more
effort and time than recalculating the secondary parameter with the
Data-Manipulation Program. Also, the size of the data base is maintained at a
minimum by not storing secondary parameters.

Another use of the program is to check consistency of primary parameters.
For example, by calculating the secondary parameter, depth to water, the
relation between water level and land surface can be examined. The
secondary parameter, depth to water, can then be compared with a depth-to-
water map in order to find inconsistencies between the water level and land
surface primary parameters. Additional information on the Data-Manipulation
Program is provided in Supplement II.

Data Transformation

The Data-Transformation Program is the interface between the data base
and ground-water flow models (Trescott and others, 1976). This program
produces a model matrix for a finite-difference model used for aquifer
simulation. The program processes data retrieved from the data base. It
will process 10-minute, 1-minute, and 6-second data.

17

The program is divided into two major steps. In step 1, values and
their corresponding geographic coordinates are extracted from retrieved data.
The longitude and latitude are converted to X and Y values. These cartesian
coordinates are then rotated by an angle specified by the user. The result
of this step is a group of (X, Y, value) triplets that are in the coordinate
system of the model grid. In step 2, values are calculated for each of the
nodes of the model. There are three techniques that can be used to produce
these values. The user can choose between an average, a weighted-average, or
a trend-surface technique (Davis, 1973).

For average and weighted-average techniques, converted data-base data
are trimmed to fit the model area. For each (X, Y, value) triplet, the model
block in which the point is located is determined. For the average technique,
a sum of the data-base values falling within the model block and the number
of values within the block are calculated. For the weighted-average
technique, the distance between the coordinates of the data-base point and the
coordinates of the center of the model block are calculated. The program
calculates (1) the data-base value divided by the square of the distance and
(2) the reciprocal of the square of the distance. Sums of each of these
calculations are kept for each model block. Then, for each model block, an
average or weighted-average value is calculated by using the data that are
associated with the block. For the average technique, the sum of the data
base values is divided by the number of values in the model block and this
result is assigned to that model block. For the weighted-average technique,
the sum of the data-base values divided by the square of the distance is
divided by the sum of the reciprocal of the square of the distances and this
result is assigned to the model block. If some of the model blocks lack
data, they cannot be assigned a value. In the trend-surface technique, all
converted data are used to calculate the node values and all model blocks are
assigned a value. In this technique, the converted data-base data are fit to
a polynomial surface and a value is calculated for a model block by solving
the polynomial using the coordinates of the center of the model block. For
all three techniques, the model matrix is produced in one of two user-
selectable formats.

The most important aspect of the Data-Transformation Program is that the
model grid is completely independent of the data-base grid. An example of a
hypothetical model grid is given in figure 5. There are no restrictions on
the finite-difference model grid pattern. The model blocks can be of any
desired size and the grid does not have to be uniform. In addition, the
model grid can be oriented at any angle to the data-base grid. This gives the
user flexibility in choosing the model grid. Additional information on the
Data-Transformation Program is provided in Supplement II.

Graphics

The Graphics Program generates contour maps and three-dimensional views
of the data. The program is based on computer programs developed by
California Computer Products, Inc. (Calcomp). The contour maps and three-
dimensional views can be reproduced on Calcomp and Calcomp-compatible flat-bed
and drum plotters. The Graphics Program can be used without knowing how the
Calcomp computer programs actually function.

18

>]-%--
_LL_L

 1

 I H

101°20'

POSITION OF PRINCIPAL NODE: ROW6, COLUMN
LATITUDE OF PRINCIPAL NODE: 40°14'00"
LONGITUDE OF PRINCIPAL NODE: 101°12'00"
ROTATION ANGLE: 30°

T1
_J __ I_ _L J40°00'

101" 00'

EXPLANATION

- DATA-BASE GRID

MODEL GRID

Figure 5.--Hypothetical model grid overlaid on the data-base grid.

19

To generate contour maps, the user needs to specify: (1) Title of map,
(2) rotation angle of map on plotter, (3) width of plotter, and (4) interval
between index contours. The Graphics Program then generates the data and
commands needed by the Calcomp computer programs to produce the plotter
commands.

To generate three-dimensional views, the user specifies the following:
(1) Title of plot, (2) position of observer, (3) distance of observer from
surface, (4) smoothness of plot, and (5) exaggeration of plot in the Z
direction. The Graphics Program then generates the data and commands needed
by the Calcomp computer programs to produce the plotter commands. The user
has the option of generating multiple views of the same surface in one
operation of the program.

The data base was initially linked to the Calcomp computer programs
because they were available and usable. The data base can be linked to
other available commercial graphics program packages as needed. Additional
information on the Graphics Program is provided in Supplement II.

SUMMARY

The High Plains RASA has developed a data storage, retrieval, and update
system to organize and manipulate detailed areal interpretive data. This
system provides the capability to grid areal data for ground-water flow models
at any grid spacing and orientation. The data storage and retrieval system
can be adapted for other studies. The system is only directly portable to
IBM mainframes that provide the System 2000 DBMS and have compilers for the
Fortran IV and PL/1 languages. The system is designed for use with small
study areas.

The system is built around a hierarchically-structured data base
consisting of related latitude-longitude blocks. Various parameters in the
data base can be stored at different levels of detail, with the finest detail
being a 6-second by 6-second block (approximately 0.01 mi2). Statistics about
the parameter are stored at all higher levels in the data base, including
1-minute by 1-minute blocks, 10-minute by 10-minute blocks, and 1-degree by
1-degree blocks, so the parameter is available at all levels above the base
level. If the data are not available in sufficient detail to store it for
each 6-second by 6-second block, then the data may be stored for 1-minute by
1-minute, 10-minute by 10-minute or 1-degree by 1-degree blocks. The system
allows direct updating of the data base and a second method of updating the
data that provides immediate updates, while preserving the integrity of the
permanent part of the data base.

20

REFERENCES

Davis, John C., 1973, Statistics and data analysis in geology: New York,
John Wiley, 550 p.

Luckey, R.R., and Ferrigno, C.F., 1982, A data-management system for areal
interpretative data for the High Plains in parts of Colorado, Kansas,
Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S.
Geological Survey Water-Resources Investigations 82-4072, 112 p.

Martin, James, 1977, Computer data-base organization: Englewood Cliffs, N.J.
Prentice-Hall, 713 p.

Trescott, P.C., Pinder, G.F., and Larson, S.P., 1976, Finite-difference
model for aquifer simulation in two dimensions with results of numerical
experiments: U.S. Geological Survey Techniques of Water Resources
Investigations, bk 7, chap. Cl, 115 p.

21

SUPPLEMENT I: DATA-BASE DICTIONARY

Within the data base, the data are arranged in a hierarchical structure.
At the top of this structure, which is referred to as the root level or level
0, is a group of data items (called the entry record) that uniquely define
the data stored at the lower levels of the structure. The study unit and
parameter names are part of the entry record. At level 1, data for 1-degree
by 1-degree blocks are stored. At level 2, data for 10-minute by 10-minute
blocks are stored. At level 3, data for 1-minute by 1-minute blocks are
stored. Logically, data for 6-second by 6-second blocks should be stored at
level 4, but these data actually are stored at level 3. Proposal and remarks
data are maintained at level 1.

Data at each level are stored in groups called schema records. A schema
record consists of a group of logically related data items; these data items
are referred to as schema or component items. Each schema record is assigned
a name and a number and each schema item has a unique component name and
component number.

Schema records and the corresponding schema items associated with the
data base are listed in table 1. For each schema item, the table indicates
the data type. For this data base, five data types are used: integer,
decimal, text, character, and date. Both text and character data types are
used to store alphanumeric data. When a character item is stored in the data
base, the leading, trailing, and extraneous imbedded blanks are removed; for
text items, all blanks are retained when the items are stored.

The schema records named LEV3 (for 6-second data) and PROP contain 100
schema items that correspond to the 100 6-second by 6-second blocks within a
1-minute by 1-minute block. All of these schema items are not listed, because
the items are identically formatted. Arrangement of the 6-second schema
items within the 1-minute by 1-minute block is shown in figure 6.

22

Ta
bl
e

1.
--
Da
ta
-j
ba
se

d
i
c
t
i
o
n
a
r
y

Sc
he
ma

or

c
o
m
p
o
n
e
n
t

F
o
r
m
a
t

N
u
m
b
e
r

N
a
m
e

Ty
pe

L
e
n
g
t
h

j\
en
ic
jr
K.
b

L
E
V
E
L

0

-
E
N
T
R
Y

R
E
C
O
R
D

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 17 21 22 23 30

E
N
T
R
Y

A
Q
P
A
R
M

U
N
I
T

P
N
A
M
E

S
T
U
D
Y

D
E
N
S
E

SC
AL
E

F
L
A
G

L
A
S
T
D

L
A
S
T
T

M
N
O

M
X
O

A
V
G
O

N
U
M
O

SD
VO

U
N
T
D
S
C

R
E
S
 A

R
E
S
B

R
E
S
C

MV
I

_

C
h
a
r
a
c
t
e
r

C
h
a
r
a
c
t
e
r

C
h
a
r
a
c
t
e
r

C
h
a
r
a
c
t
e
r

I
n
t
e
g
e
r

In
te
ge
r

In
te
ge
r

D
a
t
e

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

D
e
c
i
m
a
l

Te
xt

In
te

ge
r

D
e
c
i
m
a
l

Te
xt

In
te

ge
r

_

38
8

30 30
2 3 1 7 6 5 5 5 7 7

10 9 10 10 5

L
e
v
e
l
-
0

sc
he
ma

re
co
rd

C
o
n
c
a
t
e
n
a
t
i
o
n

of

s
t
u
d
y
-
u
n
i
t

an

d
p
a
r
a
m
e
t
e
r

na
me
s

S
t
u
d
y
-
u
n
i
t

na
me

P
a
r
a
m
e
t
e
r

na
me

P
r
o
j
e
c
t

na
me

D
a
t
a

d
e
n
s
i
t
y

n
O

/-
>
Q

1
£
S

C
h
a
r
a
c
t
e
r
i
s
t
i
c

of

p
a
r
a
m
e
t
e
r

v
a
l
u
e

(v

al
ue

x

10

)
In
di
ca
te
s

ty
pe

s
of

e
x
i
s
t
i
n
g

p
r
o
p
o
s
a
l
s

fo

r
p
a
r
a
m
e
t
e
r

D
a
t
e

of

la

st

u
p
d
a
t
e

(Y
YY
MM
DD
)

T
i
m
e

of

la

st

u
p
d
a
t
e

(H

HM
MS

S)
M
i
n
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

M
a
x
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

A
v
e
r
a
g
e

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

N
u
m
b
e
r

of

v
a
l
u
e
s

us

ed

to

co

mp
ut

e
st
at
is
ti
cs

S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

-

2
d
e
c
i
m
a
l

p
l
a
c
e
s

D
e
s
c
r
i
p
t
i
o
n

of

u
n
i
t

of

m
e
a
s
u
r
e
m
e
n
t

R
e
s
e
r
v
e
d

fi

el
d

R
e
s
e
r
v
e
d

fi

el
d

-
3

d
e
c
i
m
a
l

p
l
a
c
e
s

R
e
s
e
r
v
e
d

fi

el
d

M
i
s
s
i
n
g
-
v
a
l
u
e

i
n
d
i
c
a
t
o
r

L
E
V
E
L

1
-
R
E
M
A
R
K
S

R
E
C
O
R
D

50 51 52 53 54 55 56 57

R
E
M
A
R
K

R
M
D
A
T
E

R
E
M
S
E
Q

RE
MI

R
E
M
2

R
E
M
3

R
E
M
4

RE
M5

-

D
a
t
e

I
n
t
e
g
e
r

Te
xt

Te
xt

Te
xt

T
e
x
t

Te
xt

- 7 3
50 50 50 50 50

L
e
v
e
l
-
1

sc
he
ma

re
co
rd

-

g
e
n
e
r
a
l

p
a
r
a
m
e
t
e
r

i
n
f
o
r
m
a
t
i
o
n

-

ch
il
d

of

e
n
t
r
y

r
e
c
o
r
d

D
a
t
e

r
e
m
a
r
k

wa

s
f
o
r
m
u
l
a
t
e
d

(Y

YY
MM

DD
)

R
e
m
a
r
k

s
e
q
u
e
n
c
e

n
u
m
b
e
r

F
i
r
s
t

li
ne

of

r
e
m
a
r
k

S
e
c
o
n
d

li
ne

of

r
e
m
a
r
k

T
h
i
r
d

li
ne

of

r
e
m
a
r
k

F
o
u
r
t
h

li
ne

of

r
e
m
a
r
k

F
i
f
t
h

li
ne

of

r
e
m
a
r
k

Ta
bl
e

1
.-

-D
at

a-
ba

se

d
i
c
t
i
o
n
a
r
y

C
o
n
t
i
n
u
e
d

Sc
he
ma

or

c
o
m
p
o
n
e
n
t

F
o
r
m
a
t

N
u
m
b
e
r

10
0

10
1

10
2

10
3

10
4

11
1

11
2

11
3

11
4

11
5

20
0

20
1

20
2

20
3

20
4

21
1

21
2

21
3

21
4

21
5

N
a
m
e

LE
V1

LA
T1

LO
NG

1
L
A
T
1
D

L
O
N
G
1
D

MN
1

MX
1

AV
G1

NU
M1

SD
V1

L
E
V
2

LA
T2

LO
NG
2

L
A
T
2
D

L
O
N
G
2
D

M
N
2

M
X
2

A
V
G
2

N
U
M
2

SD
V2

Ty
pe -

I
n
t
e
g
e
r

I
n
t
e
g
e
r

D
e
c
i
m
a
l

D
e
c
i
m
a
l

In
te

ge
r

In
te
ge
r

I
n
t
e
g
e
r

I
n
t
e
g
e
r

D
e
c
i
m
a
l

-

I
n
t
e
g
e
r

In
te

ge
r

D
e
c
i
m
a
l

D
e
c
i
m
a
l

I
n
t
e
g
e
r

I
n
t
e
g
e
r

I
n
t
e
g
e
r

I
n
t
e
g
e
r

D
e
c
i
m
a
l

L
e
n
g
t
h

L
E
V
E
L

- 6 7 7 8 5 5 5 5 7

L
E
V
E
L

- 6 7 7 8 5 5 5 5 7

j\
ei
ii
a.
tK
.s

1
-

1 -
D
E
G
R
E
E

D
A
T
A

R
E
C
O
R
D

Le
ve

l-
1

sc
he
ma

re

co
rd

-

ch
il
d

of

e
n
t
r
y

re
co
rd

L
a
t
i
t
u
d
e

of

s
o
u
t
h
e
a
s
t

co
rn
er

of

1-
de
gr
ee

b
l
o
c
k

(D
DM
MS
S)

L
o
n
g
i
t
u
d
e

of

s
o
u
t
h
e
a
s
t

co

rn
er

of

1-
de
gr
ee

b
l
o
c
k

(D
DD
MM
SS
)

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

la
ti
tu
de
,

in

de
gr
ee
s

-
5

d
e
c
i
m
a
l

pl

ac
es

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5

de
c-

im
al

pl
ac
es

M
i
n
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

M
a
x
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

A
v
e
r
a
g
e

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

N
u
m
b
e
r

of

v
a
l
u
e
s

u
s
e
d

to

co

mp
ut

e
s
t
a
t
i
s
t
i
c
s

S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

-

2
d
e
c
i
m
a
l

p
l
a
c
e
s

2
-

10
 -
M
I
N
U
T
E

D
A
T
A

R
E
C
O
R
D

L
e
v
e
l
-
2

sc
he
ma

re

co
rd

-

ch
il
d

of

1-
de
gr
ee

da
ta

r
e
c
o
r
d

L
a
t
i
t
u
d
e

of

s
o
u
t
h
e
a
s
t

co
rn
er

of

10

-m
in

ut
e

b
l
o
c
k

(D
DM
MS
S)

L
o
n
g
i
t
u
d
e

of

s
o
u
t
h
e
a
s
t

co
rn
er

of

10

-m
in

ut
e

b
l
o
c
k

(D

DD
MM

SS
)

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

la
ti
tu
de
,

in

de
gr
ee
s

-
5

d
e
c
i
m
a
l

pl
ac
es

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5

d
e
c
i
m
a
l

pl

ac
es

M
i
n
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

M
a
x
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

A
v
e
r
a
g
e

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

N
u
m
b
e
r

of

v
a
l
u
e
s

u
s
e
d

to

co
mp
ut
e

st
at

is
ti

cs
S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

-

2
d
e
c
i
m
a
l

p
l
a
c
e
s

T
a
b
l
e

1
.-

-D
at

a-
jb

as
e
d
i
c
t
i
o
n
a
r
y
-
-
C
o
n
t
i
n
u
e
d

Sc
he
ma

or

c
o
m
p
o
n
e
n
t

F
o
r
m
a
t

fo

N
u
m
b
e
r

30
0

30
1

30
2

30
3

30
4

31
1

31
2

31
3

31
4

31
5

30
0

30
1

30
2

30
3

30
4

31
1

31
2

31
3

31
4

31
5

40
1-

50
0

N
a
m
e

LE
V3

L
A
T
3

L
O
N
G
3

L
A
T
3
D

L
O
N
G
3
D

MN
3

M
X
3

A
V
G
3

N
U
M
3

SD
V3

L
E
V
3

LA
T3

L
O
N
G
3

L
A
T
3
D

L
O
N
G
3
D

M
N
3

MX
3

A
V
G
3

N
U
M
3

SD
V3

M
-

J
J

Ty
pe _

I
n
t
e
g
e
r

I
n
t
e
g
e
r

D
e
c
i
m
a
l

D
e
c
i
m
a
l

I
n
t
e
g
e
r

I
n
t
e
g
e
r

In
te

ge
r

I
n
t
e
g
e
r

D
e
c
i
m
a
l

_
In

te
ge

r
In

te
ge

r
D
e
c
i
m
a
l

D
e
c
i
m
a
l

I
n
t
e
g
e
r

I
n
t
e
g
e
r

I
n
t
e
g
e
r

In
te

ge
r

D
e
c
i
m
a
l

In
te

ge
r

L
e
n
g
t
h

LE
VE
L

_ 6 7 7 8 5 5 5 5 7

LE
VE
L

_ 6 7 7 8 5 5 5 5 7 5

ix
ei
ii
ar
iv
ci

3
-

1 -
M
I
N
U
T
E

D
A
T
A

R
E
C
O
R
D

L
e
v
e
l
-
3

sc
he
ma

re
co
rd

-

ch
il
d

of

10

-m
in

ut
e

da
ta

re
co
rd

L
a
t
i
t
u
d
e

of

so
ut
he
as
t

c
o
r
n
e
r

of

1-
mi
nu
te

b
l
o
c
k

(D

DM
MS

S)
L
o
n
g
i
t
u
d
e

of

so
ut
he
as
t

c
o
r
n
e
r

of

1-
mi
nu
te

b
l
o
c
k

(D
DD
MM
SS
)

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

lo
ng
it
ud
e,

in

de
gr
ee
s

-
5

de
ci

ma
l

p
l
a
c
e
s

M
i
n
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

M
a
x
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

A
v
e
r
a
g
e

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

N
u
m
b
e
r

of

va
lu
es

us
ed

to

c
o
m
p
u
t
e

st
at
is
ti
cs

S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

-

2
d
e
c
i
m
a
l

pl
ac
es

3
-
6
-
S
E
C
O
N
D

D
A
T
A

R
E
C
O
R
D

L
e
v
e
l
-
3

sc
he
ma

re
co
rd

-

ch
il
d

of

10
-m
in
ut
e

da
ta

re

co
rd

L
a
t
i
t
u
d
e

of

s
o
u
t
h
e
a
s
t

c
o
r
n
e
r

of

1-
mi
nu
te

b
l
o
c
k

(D

DM
MS

S)
L
o
n
g
i
t
u
d
e

of

so
ut
he
as
t

c
o
r
n
e
r

of

1-
mi
nu
te

b
l
o
c
k

(D
DD
MM
SS
)

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5

de
ci

ma
l

p
l
a
c
e
s

D
e
c
i
m
a
l

e
q
u
i
v
a
l
e
n
t

of

lo
ng
it
ud
e,

in

de

gr
ee

s
-

5
de
ci
ma
l

p
l
a
c
e
s

M
i
n
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

M
a
x
i
m
u
m

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

A
v
e
r
a
g
e

p
a
r
a
m
e
t
e
r
-
v
a
l
u
e

N
u
m
b
e
r

of

va

lu
es

us
ed

to

c
o
m
p
u
t
e

st

at
is

ti
cs

S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

-

2
d
e
c
i
m
a
l

pl

ac
es

6
-
s
e
c
o
n
d

p
a
r
a
m
e
t
e
r

m
a
t
r
i
x

-

10

ro

ws

b
y

10

co
lu
mn
s

-
se

e
fi
gu
re

6

fo
r

a
r
r
a
n
g
e
m
e
n
t

Ta
bl
e

I.
--

Da
ta

-b
as

e
di
ct
io
na
ry
--
Co
nt
in
ue
d

Sc
he
ma

or

co
mp
on
en
t

Fo
rm

at

Nu
mb
er

Re
ma
rk
s

Na
me

Ty
pe

Le
ng
th

59
9

60
1

60
2

60
3

60
4

60
5

60
6

60
7

60
8

70
1-

80
0

89
9

90
1

90
2

90
3

90
4

90
5

90
6

90
7

90
8

91
1

91
2

91
3

91
4

91
5

PR
OP

LA
TP

LO
NG

P
LA
TP
D

LO
NG
PD

PE
RS
ON

PR
DA

TE
PR

TI
ME

PR
FL

AG
PA

A-
PJ
J

PR
OP

2

LA
TP

2
LO
NG
P2

LA
TP
D2

LN
GP

D2
PE
RS
N2

PR
DA
T2

PR
TI

M2
PR
FL
G2

MN
9

MX
9

AV
G9

NU
M9

SD
V9

-

In
te
ge
r

In
te
ge
r

De
ci

ma
l

De
ci
ma
l

Ch
ar

ac
te

r
Da
te

In
te

ge
r

In
te

ge
r

In
te

ge
r

-

In
te

ge
r

In
te

ge
r

De
ci

ma
l

De
ci

ma
l

Ch
ar

ac
te

r
Da

te
In

te
ge

r
In

te
ge

r
In

te
ge

r
In

te
ge

r
In

te
ge

r
In

te
ge

r
De

ci
ma

l

LE
VE
L

1

- 6 7 7 8 25
7 6 1 5

LE
VE
L

1

- 6 7 7 8 25
7 6 1 5 5 5 3 7

L
-
MU

LT
I-

 V
AL
UE

PR
OP
OS
AL

RE

CO
RD

Le
ve
l-
 1

sc

he
ma

re

co
rd

-
us
ed

to

pr
op
os
e

ch
an
ge
s

to
pa

ra
me

te
r

va
lu

es

fo
r

6-
se
co
nd

da

ta

-

ch
il

d
of

en
tr
y

re
co
rd

La
ti

tu
de

of

so
ut
he
as
t

co
rn

er

of

1-
mi
nu
te

bl
oc
k

(D
DM
MS
S)

Lo
ng

it
ud

e
of

so

ut
he

as
t

co
rn

er

of

1-
mi
nu
te

bl
oc
k

(D
DD
MM
SS
)

De
ci
ma
l

eq
ui

va
le

nt

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
De
ci
ma
l

eq
ui
va
le
nt

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
La
st

na
me

of

pe

rs
on

su

bm
it

ti
ng

pr

op
os

al
s

Da
te

pr

op
os

al

lo

ad
ed

in

to

th

e
da
ta

ba
se

(Y
YY
MM
DD
)

Ti
me

pr
op
os
al

lo

ad
ed

in
to

th
e

da
ta

ba
se

(H

HM
MS

S)
Fl

ag

in
di
ca
ti
ng

th
e

st
at
us

of

th
e

pr
op

os
al

6-
se

co
nd

pa
ra
me
te
r

pr
op

os
al

ma

tr
ix

-

10

ro
ws

by

10

co
lu

mn
s

-
se
e

fi
gu
re

6

fo
r

ar
ra
ng
em
en
t

-
SI

NG
LE

 -
VA

LU
E

PR
OP

OS
AL

RE

CO
RD

Le
ve

l-
 1

sc

he
ma

re

co
rd

-
us

ed

to

pr
op
os
e

ch
an
ge
s

to

pa

ra
me

te
r

va
lu

es

fo
r

10
-m

in
ut

e
an
d

1-
mi
nu
te

da

ta
-c

hi
ld

of

en

tr
y

re
co
rd

La
ti
tu
de

of

so

ut
he

as
t

co
rn

er

of

da
ta

bl
oc
k

(D
DM
MS
S)

Lo
ng

it
ud

e
of

so

ut
he

as
t

co
rn

er

of

da

ta

bl
oc
k

(D
DD

MM
SS

)
De
ci
ma
l

eq
ui
va
le
nt

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
De
ci
ma
l

eq
ui
va
le
nt

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
La

st

na

me

of

pe

rs
on

su
bm
it
ti
ng

pr
op
os
al
s

Da
te

pr
op
os
al

lo

ad
ed

in

to

th

e
da

ta

ba

se

(Y
YY
MM
DD
)

Ti
me

pr
op
os
al

lo

ad
ed

in

to

th
e

da
ta

ba
se

(H
HM
MS
S)

Fl
ag

in
di
ca
ti
ng

th

e
st
at
us

of

th
e

pr
op

os
al

Mi
ni

mu
m

pa
ra

me
te

r-
va

lu
e

Ma
xi
mu
m

pa
ra

me
te

r-
va

lu
e

Pr
op

os
ed

pa
ra
me
te
r-
va
lu
e

Nu
mb
er

of

va
lu
es

us

ed

to

co
mp
ut
e

st
at
is
ti
cs

St
an

da
rd

de
vi
at
io
n

-
2

de
ci
ma
l

pl
ac
es

ro

A
A

40
1

B
A

41
1

C
A

42
1

D
A

43
1

E
A

44
1 F
A

45
1

G
A

46
1

H
A

47
1

IA 48
1

JA 49
1

A
B

40
2

BB 41
2

C
B

42
2

D
B

43
2

EB 44
2

FB 45
2

G
B

46
2

H
B

47
2

IB 48
2

JB 49
2

A
C

40
3

B
C

41
3

C
C

42
3

D
C

43
3

E
C

44
3

F
C

45
3

G
C

46
3

H
C

47
3

1C 48
3

JC 49
3

A
D

40
4

B
D

41
4

C
D

42
4

D
D

43
4

E
D

44
4

F
D

4
5
4

G
D

46
4

H
D

47
4

ID 48
4

JD 49
4

A
E

4
0
5

B
E

3

41
5

C
E

42
5

D
E

43
5

EE 4
4
5

FE 45
5

G
E

3

46
5

H
E

47
5

IE 48
5

JE 4
9
5

A
F

3

40
6

BF 41
6

C
F

42
6

D
F

43
6

EF 44
6

FF 45
6

G
F

46
6

H
F

47
6 IF

48
6

JF 49
6

A
G

40
7

B
G

41
7

C
G

42
7

D
G

43
7

EG 44
7

FG 45
7

G
G

46
7

H
G

47
7 IG 48
7

JG 49
7

A
H

40
8

B
H

41
8

C
H

42
8

D
H

43
8

E
H

*

44
8

FH 45
8

G
H

46
8

H
H

47
8

IH 48
8

JH 49
8

A
l

40
9

B
l

41
9

C
l

4
2
9

D
l

43
9

E
l

44
9

F
l

45
9

G
l

46
9

H
I

47
9 II 48
9

J
l

49
9

A
J

4
1
0

B
J

42
0

C
J

4
3
0

D
J

4
4
0

E
J

45
0

F
J

4
6
0

G
J

47
0

H
J

4
8
0 IJ 4

9
0

JJ 50
0

A
)

LE
V

3
S

ch
em

a
R

ec
or

d

P
A

A

70
1

P
B

A

71
1

P
C

A

72
1

P
D

A

73
1

P
E

A

74
1

P
F

A

75
1

P
G

A

76
1

P
H

A

77
1

P
IA

78
1

P
JA

79
1

P
A

B

7
0
2

PB
B

71
2

P
C

B

7
2
2

P
D

B

73
2

PE
B

74
2

P
FB 75

2

P
G

B

76
2

P
H

B

77
2

P
IB

78
2

P
JB

7
9
2

P
A

C

70
3

P
B

C

71
3

P
C

C

72
3

P
D

C

73
3

P
E

C

7
4
3

P
F

C

75
3

P
G

C

76
3

P
H

C

77
3

P
IC 78

3

P
JC 79
3

P
A

D

7
0
4

P
B

D

71
4

P
C

D

7
2
4

P
D

D

7
3

4

P
E

D

7
4

4

P
F

D

75
4

P
G

D

76
4

P
H

D

7
7
4

P
ID

78
4

P
JD 79

4

P
A

E

7
0

5

PB
E

71
5

P
C

E

7
2
5

P
D

E

73
5

PE
E

74
5

P
FE

7
5
5

P
G

E

7
6
5

P
H

E

7
7
5

P
IE 7
8

5

P
JE

7
9

5

P
A

F

70
6

P
B

F

71
6

P
C

F

72
6

P
D

F

73
6

P
E

F

74
6

P
FF

75
6

P
G

F

76
6

P
H

F

77
6

P
IF

78
6

P
JF

79
6

P
A

G

70
7

P
B

G

71
7

P
C

G

72
7

P
D

G

73
7

P
E

G

74
7

P
FG

.

75
7

P
G

G

7
6
7

P
H

G

7
7
7

P
IG 78
7

P
JG 79

7

P
A

H

70
8

P
B

H

7
1
8

P
C

H

7
2
8

P
D

H

73
8

P
E

H

7
4

8

P
FH

7
5
8

P
G

H

76
8

P
H

H

77
8

P
IH

78
8

P
JH 7
9
8

P
A

 I

7
0
9

P
B

I

71
9

P
C

I

7
2
9

P
D

I

73
9

P
E

I

7
4
9

P
FI

75
9

P
G

I

76
9

P
H

I

7
7
9

P
ll

7
8
9

P
JI

79
9

P
A

J

7
1

0

P
B

J

7
2

0

P
C

J

7
3
0

P
D

J

7
4
0

P
E

J

7
5
0

P
FJ

7
6
0

P
G

J

7
7

0

P
H

J

7
8
0

P
IJ

7
9

0

P
JJ

80
0

B)
 P

R
O

P
S

ch
em

a
R

ec
or

d

E
X

P
LA

N
A

T
IO

N

-
C
O
M
P
O
N
E
N
T
 N
A
M
E

C
O
M
P
O
N
E
N
T
 N
U
M
B
E
R

Fi
gu

re

6.

A
r
r
a
n
g
e
m
e
n
t

of

6-

se
co

nd

bl
oc
k

sc
he

ma

it

em
s

in

a

1-
mi

nu
te

bl
oc
k.

SUPPLEMENT II: PROGRAM-USER DOCUMENTATION

This supplement contains documentation for the major computer programs
used for the second High Plains RASA DMS. The purpose of the documentation
is to describe procedures for using the programs; the documentation is not
intended to be used as a program-maintenance manual. However, in some
instances, information is present that may be useful in the process of
software maintenance. To aid the programmer, the programs are internally
documented. In addition, Supplement III provides information to help a
programmer adapt the software for use by another study.

There are 11 sets of documentation contained within this supplement.
The first 8 sets of documentation are for programs that interact with the data
base and the DBMS. The final three sets of documentation are for application
programs that use data retrieved from the data base.

The Edit Program

The Edit Program checks the correctness of the input records for other
programs in the DMS. These other programs are called the destination
programs. The principal destination programs are:

1. The Load Program;
2. The Retrieval Program; and
3. The Instant-Update Program.

The main function of the Edit Program is to check the syntax of input records
for these destination programs. The program also can perform other types of
checks. These additional checks are either automatically or optionally
performed by the program. The nature of these additional checks depends upon
the types of records that are being edited.

For Load Program input, the Edit Program automatically checks the syntax
of each record. For record types 100#, 200#, and 300#, geographic coordinates
are checked. The program determines if the latitude and longitude values are
within the study area. Latitude and longitude also are checked to determine
if their values are proper for the record type. Geographic coordinates are
used to determine that the 10-minute by 10-minute blocks are grouped with the
correct 1-degree by 1-degree block and that the 1-minute by 1-minute blocks
are grouped with the correct 10-minute by 10-minute block. The program
determines if the statistical components are only given values on the records
corresponding to the base level at which the data are stored. The program
can optionally check for possible duplication of data within the data base.
This check is useful if the parameter is to be loaded in more than one
execution of the Load Program. The program determines which 1-degree by
1-degree blocks, if any, have already been loaded into the data base for the
parameter. Then, while editing a 100# record (which corresponds to a 1-degree
by 1-degree block), the program determines if that block of data has
previously been stored in the data base. If the 1-degree by 1-degree block is
already loaded into the data base, the program prints a message and aborts
execution.

28

For Retrieval Program input, syntax checks automatically are performed.
The program also determines if the parameter name on the 005# record is valid
by matching the name against a list of valid data-base parameters. If the
parameter name is valid, the program then determines if the parameter is
actually stored within the data base. For the 006# record, the program
verifies that the retrieval area, as described by the latitude and longitude
extremes, is within the study area.

For Instant-Update Program input, the program automatically checks syntax
of the input records. The parameter name, on the 002# record, is checked
against a list of valid parameter names. The person's name, on the 599#
record, is checked against a list of authorized program users. The remaining
checks depend upon the action requested on the 599# record. For example, if
a request is made to delete a proposal or to accept a proposal, the program
determines if that proposal exists. On the 600# record, geographic
coordinates are checked to see that the values are within the study area.

This synopsis does not include all checks performed by the Edit Program.
In general, checks performed by the program follow guidelines stated in the
user documentation for each of the destination programs; however, no attempt
was made to perform every conceivable check that could be made for these
input records. The checks that are made are more than sufficient to allow
proper execution of the Load, Retrieval, and Instant-Update Programs.

Input

The main input to the program is the data set that is to be edited.
Description of the records in the data set can be found in the appropriate
destination-program documentation.

The only other input is called the parameter record. Information on
this record guides execution of the Edit Program. The parameter record
supplies information that is needed to access the data base, including
data-base name, data-base password, and the study-unit name. The parameter
record also contains the input-unit device number for the records to be
edited. If the number of input records is small, the input records can be
placed directly within the input stream. In this case, the input records are
placed following the parameter record and the input-unit device number is set
to 5. Large volumes of input data normally will be stored in a disk file.
The input-unit device number of this disk file would then be given on the
parameter record. The parameter record also contains the output-unit device
number (which will be described in the section on output).

The parameter record also contains an execution-options array. Option 1
is used when editing Load Program input; if set to 0, the program performs
only syntax checking; if set to 1, duplication checking also is performed.
Option 2 is used when any type of input data is edited. If set to 1, the
edited records are printed within the standard print file. Option 3 is not
used and needs to be set to 0. Option 4 identifies the destination program
for which the records are to be edited. Options 5-10 are not used. The
format of the parameter record is:

29

Columns

01-30
31-32
33-34

35-36
37-38

39-40
41-50

Variable

TITLE
-

INFIL

-
OUTFIL

-
OPT

Format

7A4,A2
2X
12

2X
12

2X
1011

Element

51-52
53-60

61-68

69-72
73-76
77-79

80

-
AQNAME

DBNAME

PASSWD
-

USERID

CODE

2X
2A4

2A4

A4
4X
A3

Al

1

2

3
4

5
6
7
8
9

10

Content

Title of this run of program
Blank
Input-record logical-unit
number
Blank
Logical-unit number onto which
edited records are to be written
Blank
Options Array:

Value Explanation
0 Check syntax
1 Check duplication
0 Print diagnostics only
1 Print all input records

Unused
Destination-program
identification:

0 Records for Load Program
1 Records for Load Program
3 Records for Retrieval

Program
4 Records for Instant-

Update Program
Unused
Unused
Unused
Unused
Unused
Unused

Blank
Study-unit name (a data-base
component identifying the study
area, data-base component 2 in
table 1, Supplement I)
Data-base name (the name by which
System 2000 recognizes the data
base)
Data-base password
Blank
Users initials; printed on
report; needs to be non-blank
P

30

Output

The printed output contains summary information, including: (1) Number
of records edited, (2) number of non-fatal errors detected, and (3) number of
fatal errors detected. A fatal error is one that would cause the destination
program to execute improperly. For example, if the parameter name is invalid
on the 005# record (retrieval-request record), then the Retrieval Program
would not be able to retrieve data from the data base. This error would be
considered a fatal error. A record containing a fatal error would have to be
corrected and the program rerun.

The printed output contains a separate section for error messages. The
error messages consist of: (1) An error number, (2) a copy of the record in
error, and (3) the error message. The error number is an eight-digit number.
If the first digit is 1, the error resulted from an incorrect input record.
This type of error is correctable by the program user. In this instance,
digits 7 and 8 of the error code is the column where the error was detected.
If the first digit is a 2, the error resulted from System 2000 (the DBMS)
processing. If one of these errors occurs, the Edit Program is immediately
aborted. This type of error only could occur if the data base is damaged.
If an error message starting with a 2 is found in the printout and the error
resulted in the run being aborted, the computer staff responsible for the
program needs to be contacted. If the error message begins with a 9, the
error probably resulted from a change in the normal flow of the program
because of a previously detected error. For example, if the latitude or
longitude on a 100# record (1-degree by 1-degree block load record) is
incorrect, it would not be possible to determine if the subsequent 200#
records (10-minute by 10-minute block load record) actually represent 10-
minute by 10-minute blocks within the 1-degree by 1-degree block. In all
instances, digits 2-4 of the error code represent the error number. If the
fifth digit is 0, the error was considered minor. If the digit is 1, the
error will cause the Edit Program to immediately abort.

The edited records are output to the unit defined on the parameter card.
This device usually is a disk file. Output of the edited data is discussed
further in the section describing the procedure. Only records without fatal
errors are output; if a record contains a fatal error, it is not written to
the output device.

Sample Procedure

The Edit program is actually a system of 3 programs. The program DTEDIT1
is used to check input records for the Load Program. The program DTEDIT2 is
used to check input records for the Retrieval Program and the program DTEDIT3
is used to check input records for the Instant-Update Program. The name of
the program that is to be executed is specified in the IBM Job Control
Language (JCL).

The Edit Program may be executed by itself or in conjunction with the
Load, Retrieval, or Instant-Update Programs. It is usually executed by itself
when the accuracy of the input records is in doubt. In this instance, the
output file is not necessary, but it may be useful to list the correct

31

records. The procedure used to execute the Edit Program is set up so the
output can be written to a disk file, but this can be changed when the program
is executed. The procedure also allows the input to originate from a disk
file, but a small input data set could be part of the input stream. This is
done by specifying the input unit as logical-unit 5. A procedure called
DTEDIT is used to execute the Edit Program. To execute the Edit Program,
with both input and output disk files, the following JCL should be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.Iijbrary,DISP=SHR
//STEPNAME EXEC DTEDIT, NAME 1= input, NAME2=output,PROG=programnarae
//GOED.SYSIN DD *

parameter record

In this example, programname is the name of the version of the Edit
program that is to be executed, input is the name of the file containing the
data to be edited, and output is the name of the file to place the edited
data.

When executing the Edit Program in conjunction with a destination
program, the output file from the Edit Program is defined as a temporary
system file that is passed to the destination-program step. The following
example shows the Edit Program executed in conjunction with the Retrieval
Program. The input file is small and; consequently, it is read instream.

// ... JOB ...
//PROCLIB DD DSN=procedure.lijbrary,DISP=SHR
//STEP1 EXEC DTEDIT, PROG=DTEDIT2
//GOED.FT10F001 DD *

retrieval-request records for Retrieval Program
//GOED.FT11F001 DD DSN=&&EDOUT,UNIT=SYSDK,DISP=(,PASS) ,VOL=,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(6,6),RLSE)
//GOED.SYSIN DD *

parameter record for Edit Program
//STEP2 EXEC DTRETV,NAMEl=output
//GORT.FT10F001 DD DSN=&&EDOUT,DISP= (OLD, DELETE)
//GORT.SYSIN DD *

parameter record for Retrieval Program

In this example it is assumed that the parameter record for the Retrieval
Program specified unit 10 for the retrieval request records. The procedure
used to execute the Edit Program is as follows:

//DTEDIT PROC TIMEG=2,REG=290K,UNITl=3350,VOLl=myvol ,
// NAMEl=NULLFILE,UNIT2=3350,VOL2=myvol,NAME2=NULLFILE,
// SP1=1,SP2=10,PROG=DTEDIT1
/ /VoV/VV?VcV?^oVV?VcV\V?V{'/VV»y{^c^>Vi^W

//* DTEDIT: A PROCEDURE TO RUN THE DATA BASE EDIT PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES)
//*

32

//* TIME TOTAL RUN TIME (2)
//* REG REGION SIZE (290K)
//* CHANGE TO 750K IF DATA BASE IS TO BE ACCESSED
//* UNIT1 EDIT PROGRAM INPUT RECORDS DEVICE (3350)
//* VOL1 EDIT PROGRAM INPUT RECORDS VOLUME (myvol)
//* NAME1 EDIT PROGRAM INPUT RECORDS DSNAME (NULLFILE)
//* UNIT2 EDIT PROGRAM OUTPUT RECORDS DEVICE (3350)
//* VOL2 EDIT PROGRAM OUTPUT RECORDS VOLUME (myvol)
II* NAME2 EDIT PROGRAM OUTPUT RECORDS DSNAME (NULLFILE)
//* PROG NAME OF LOAD MODULE TO BE EXECUTED (DTEDIT1)
//* CHANGE TO DTEDIT2 IF CHECKING RETRIEVAL PROGRAM
//* INPUT RECORDS
//* CHANGE TO DTEDIT3 IF CHECKING INSTANT-UPDATE PROGRAM
//* INPUT RECORDS
//*
/ /J>^CJLJO..U^'~JL.*WnU~'~.-l~.^^~t«'~.J~..'~..'^U.X.~'»W^^^

//GOED EXEC PGM=&PROG,TIME=&TIMEG,REGION=®
//STEPLIB DD DSN=mylijb,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//* DEFINE THE STANDARD I/O DEVICES
//*
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//*
//* LOGICAL UNIT 10(DEFAULT) USED TO INPUT DATA TO EDIT PROGRAM
//* LOGICAL UNIT 11(DEFAULT) USED FOR OUTPUT OF DATA THAT PASSES EDIT
//*
//FT10F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),
// SPACE=(TRK,(6,6),RLSE),DSNAME=&NAME2
//*
//* LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
//* LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER
//*
//FT20F001 DD DSN=errorfi2e,DISP=SHR
//FT21F001 DD SYSOUT=A
//*
//* DEFINE FILES CONTAINING PARAMETER AND USERS' NAMES
//*
//FT22F001 DD DSN=userfi2e,DISP=SHR
//FT23F001 DD DSN=parrasfile,DISP=SHR
//*
//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2feparmsfi2e,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY

33

//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATED1 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=datcLbasefiIel ,DISP=SHR
//dbname2 DD DSN=datajbasefile2,DISP=SHR
//dbnameS DD DSN=datajbasefile3,DISP=SHR
//dbname4 DD DSN=datajbasefile4,DISP=SHR
//dbname5 DD DSN=datajbasefile5 ,DISP=SHR
//dbnamee DD DSN=datajbasefile6,DISP=SHR

Note: In this procedure and subsequent procedures shown in this report,
dbname is the first seven characters of the data-base name.

The Load Program

The Load Program is used to load large volumes of data into the data
base. The program uses the System 2000 (the DBMS) optimized-loading
procedure. One parameter normally is loaded per program execution, but 6-
second data may be loaded in several executions, because of the large quantity
of data involved. If a parameter is loaded into the data base in more than
one execution of the program, whole 1-degree by 1-degree blocks of data must
be loaded in a single operation. This restriction is placed in the program
to make it easy to account for what data has been loaded. This restriction
also simplifies the editing procedure used to check the data prior to loading.

The System 2000 optimized-load procedure, which is designed to load
large aggregates of data, stores the data into contiguous locations within the
data base. This ensures that the number of accesses to the data base are
minimized when the data are retrieved. If a parameter is loaded in several
executions of the program, the executions need to be done consecutively in
order to have all data for the parameter in one area of the data base.

The data needs to be thoroughly edited prior to loading by using the
Edit Program. If the data successfully passes the Edit Program checks, there
should be no difficulty in properly loading the data. The Load Program
performs some minor data checks, but these are not sufficient to ensure the
correctness of the data. The Edit Program needs to be used, because certain
types of errors in the input data can cause System 2000 processing to fail

34

at a time when the data base is being updated; this would likely damage the
data base. For this reason, the first step in the loading process is to save
the data base on magnetic tape; then, if necessary, the data base can be
restored to its former condition prior to an aborted attempt to load data.

Input

The first input is the parameter record. The format of this record is
found in the documentation for the Edit Program. The only fields on this
record that are directly used by the Load Program are the data-base password
and the code found in column 80. The remaining fields are for use by the
Edit Program. The password must be the master password for the data base.

The data to be loaded are input in standard record formats;
specifications of these records are found following this discussion. The
Load Program can process all densities of data. The input begins with the
master records 001#, 002#, and 003#. These records contain general infor
mation pertaining to the parameter and contribute the data that comprises the
root-level record. Optionally, the next records in the input data set are
remarks data. These records are used for a short narrative description of the
parameter and may include information on the origin of the data. The sequence
of records following the master and remarks data depend upon the data density.

A parameter stored in the data base as 1-degree data has one value for
each 1-degree by 1-degree block that is partially or completely within the
study area. A 1-degree by 1-degree block is identified by the record type
100#. The 100# record contains the latitude and longitude of the southeast
corner of the 1-degree by 1-degree block, as well as the value. The record
also contains statistical components that may be optionally valued. These
statistics are the minimum, the maximum, the number of values, and the
standard deviation. These statistics are a reflection of the data used to
compute the single value for the 1-degree by 1-degree block. The number of
100# records is equivalent to the number of 1-degree by 1-degree blocks
partially or completely within the study area.

A parameter stored in the data base as 10-minute data has one value for
each 10-minute by 10-minute block within the study area. A 10-minute by 10-
minute block is identified by the record type 200#. The 200# record contains
the latitude and longitude of the southeast corner of the 10-minute by
10-minute block as well as the value. The record may also optionally contain
the minimum, the maximum, the number of values, and the standard deviation.
These statistics are a reflection of the data used to compute the single value
for the 10-minute by 10-minute block. In the input data set, 10-minute by
10-minute blocks are grouped within 1-degree by 1-degree blocks. The 1-degree
by 1-degree block is represented by a 100# record; however, in this case, all
five of the statistical components must be blank. Values for these
statistical components are computed after the data have been loaded into the
data base.

A parameter stored in the data base as 1-minute data has one value for
each 1-minute by 1-minute block within the study area. The 1-minute by 1-
minute block is identified by the record type 300#. This record contains the

35

latitude and longitude of the southeast corner of the block as well as the
same five statistical components found on the 100# and 200# records. Because
the 1-minute by 1-minute block represents the base level for the parameter,
all statistical components on the 300# record can be valued, but only the
value component is required. The 1-minute by 1-minute blocks are grouped
within 10-minute by 10-minute blocks; which in turn, are grouped within 1-
degree by 1-degree blocks. All statistical components must be blank on the
100# and 200# records. These statistics are computed after the data are
loaded.

A parameter stored in the data base as 6-second data has one value for
each 6-second by 6-second block within the study area. The format of this
data is slightly different from the preceding data. A 1-minute by 1-minute
block is represented by a 300# record that contains the latitude and longitude
of the southeast corner of the block and the five statistical components.
The 300# record is followed by ten records, types 401# through 410#, that
contain values for the 100 6-second by 6-second blocks within the 1-minute by
1-minute block. These ten records may be considered a 10-by-10 matrix
covering the 1-minute by 1-minute block. The 401# record contains ten values
for the northern-most row of 6-second data. Within a row, values are placed
from west to east. If a 1-minute by 1-minute block is located along the
boundary of the study area, some of the 6-second cells may be outside the
area. These cells are not given a valid value, but instead are given a value
called the missing-value indicator (MVI). This value, which is found on the
003# record, indicates that a particular point has no valid value. Only
6-second by 6-second blocks that have valid values are used in computing
statistics. As with 1-minute data, the 1-minute by 1-minute blocks are
grouped under the corresponding 10-minute by 10-minute blocks; which in turn,
are grouped with the proper 1-degree by 1-degree blocks. Statistical
components on the 100#, 200#, and 300# records are all blank.

001#: First master record for the Load Program

Columns

01-04
05-10
11-40
41-49
50-60
61-70
71-72
73-80

Component
or variable

TYPE

C4
C21
C22
C23

INSEQ

Key or
non-key

-

NK
NK
NK
NK

Format

A4
6X
7A4,A2
19
F11.3
2A4,A2
2X
18

Content

001#
Blank
Project Name
Reserved Value A
Reserved Value B
Reserved Value C
Blank
Sequence Number,
nondecreasing

36

002#: Second master record for the Load Program

01-04
05-10
11-18
19-48
49

50-52

53-62

63-72
73-80

003#:

01-04
05-10
11-25
26-30
31-35
36-40
41-47
48-55
56-62
63-67

68-72
73-80

050#:

01-04
05-10
11-16

17-18
19-21
22

23-72
73-80

TYPE
-

C2
C3
C5

C6

C17

-
INSEQ

Third master record

TYPE
-
-

Cll
C12
C13
C14
C15
-

C30

_
INSEQ

Remarks record

TYPE
-

C51

-
C52
ITEM

TEXT
INSEQ

-
-
K
K
NK

NK

NK

-

for

 »

-
-
NK
NK
NK
NK
NK
-
NK

_
-

.
-
NK

-
NK

NK
-

A4
6X
2A4
7A4,A2
11

13

2A4,A2

10X
18

the Load Program

A4
6X
15X
15
15
15
17
F8.2
7X
15

5X
18

A4
6X
A4,A2

2X
13
11

12A4,A2
18

002#
Blank
Study-unit name
Parameter Name
Density (l=l-degree, 2=
10-minute, 3=l-minute,
4=6-second)
Scale factor ,
f i 1A scale>. (value x 10)
Units of measurement -
description
Blank
Sequence Number,
nondecreasing

003#
Blank
Blank
Minimum
Maximum
Average
Number of values
Standard Deviation
Blank
Missing-Value Indicator
(MVI)
Blank
Sequence Number,
nondecreasing

050#
Blank
Remark date to store in
data base (MMDDYY)
Blank
Remark sequence number
Remark record number
l=First record of set
2=Second record of set
3=Third record of set
4=Fourth record of set
5=Fifth record of set

Text of remark
Sequence Number,
nondecreasing

Note: The 050# record must come in sets of five.

37

100#: One-degree data record

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

200#:

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

300#:

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

TYPE
-

C101
-

C102
-
cm
C112
C113
C114
C115
-

INSEQ

Ten-minute data

TYPE
-

C201
-

C202
-

C211
C212
C213
C214
C215
-

INSEQ

One-minute block

TYPE
-

C301
-

C302
-

" C311
C312
C313
C314
C315
-

INSEQ

.
-
K
-
K
-
NK
NK
NK
NK
NK
-

record

 B

-
K
-
K
-
NK
NK
NK
NK
NK
-

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

record--l-minute data

 B

-
NK
-
NK
-
NK
NK
NK
NK
NK
-
-

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

100#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number,
nondecreasing

200#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number,
nondecreasing

300#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Value
Number of values
Standard Deviation
Blank
Sequence Number,
nondecreasing

38

300#: One-minute block record--6-second data

01-04
05-10
11-16
17
18-24
25-72
73-80

TYPE
-

C301
-

C302
-

INSEQ

.
-
NK
-
NK
-
-

A4
6X
16
IX
17
48X
18

300#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Sequence Number,
nondecreasing

Note: This record must be followed by exactly ten 4xx# records.

401#-410#: Six-second data records

01-04
05-10
11-60

61-72
73-80

TYPE

C401-
C500

INSEQ

NK

A4
6X
1015

12X
18

4xx#; xx=(01,02,...,10)
Blank
See note below

Blank
Sequence Number,
nondecreasing

Note: The components, C401-C500, are entered ten components per record such
that the records simulate a 10-by-10 matrix geographically overlaying
the 1-minute by 1-minute block:

Record

401#
402#
403#
404#
405#
406#
407#
408#
409#
410#

Components

C401-C410
C411-C420
C421-C430
C431-C440
C441-C450
C451-C460
C461-C470
C471-C480
C481-C490
C491-C500

Output

Output from the Load Program consists of a short, printed report
providing basic information pertaining to the loaded data. The report
includes a list of the 1-degree by 1-degree blocks that were loaded into the
data base and a graphic picture that indicates the location of all of the
1-degree by 1-degree blocks within the High Plains RASA study area with the
1-degree by 1-degree blocks that were loaded highlighted.

39

Sample Procedure

To execute the Load Program, a procedure called DTLOAD is used. A data
set called DATAIN contains the input data. This data set consists of the
parameter record, followed by the proper combination of the 001#, 002#, 003//,
and so forth, records. The Load Program should be executed in conjunction
with the Edit Program. Hence, the first step would be to execute the Edit
Program, which produces a file containing input to the Load Program. The
parameter record and the other records would be input to the Edit Program in
the manner described in that documentation. The file containing the edited
data would be passed to the Load Program step, which would load the data into
the data base. To execute the Load Program, the following JCL should be used:

// ... JOB ...
//"SETUP tapenuro/HR
//PROCLIB DD DSN=procedure.Ii2>rary,DISP=SHR
//STEPNAME EXEC DTLOAD
//GO.DATAIN DD *

parameter and data records
//

The second line describes the magnetic tape used to save the data base prior
to loading any new data. The procedure used to execute the Load Program is as
follows:

//DTLOAD PROC REG=800K,TIMEG=2,SP1=1,SP2=10
//GO EXEC PGM=DTLOAD,REGION=®,TIME=&TIMEG,
// PARM='ISA(16K)'
//STEPLIB DD DSN=myIijb,DISP=SHR
// DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//SYSLIB DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.PLIBASE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//S2KMSG DD SYSOUT=A,DCB=(REeFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2tparrosfiIe,DISP=SHR
//S2KSNAP DD SYSOUT=A,DCB=BLKSIZE=882
//S2KCOMD DD DUMMY
//S2KUDUMP DD SYSOUT=A
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//*** S2K WORK FILES:
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))

40

//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//*** DATA BASE FILES:
//dbnamel DD DSN=datajbasefiIel ,DISP=OLD
//dbname2 DD DSN=datajbasefiIe2,DISP=OLD
//dbnameS DD DSN=datajbasefiIe3 ,DISP=OLD
//dbname4 DD DSN=datajbasefiIe4,DISP=OLD
//dbnameB DD DSN=datajbasefiIe5,DISP=OLD
//dbname6 DD DSN=datajbasefiIe6,DISP=OLD
//TAPES2K DD DSN=DBBACKUP,UNIT=(TAPE62,,DEFER),VOL=SER=tapenum,
// DISP=(OLD,KEEP)
//KEEPFILE DD DUMMY

The Retrieval Program

The Retrieval Program retrieves data from the data base. There are four
specifications required to identify the data to be retrieved: (1) The study-
unit name, (2) the parameter name, (3) the description (in geographic
coordinates) of a rectangular area in which data are to be retrieved, and (4)
the lowest level within the data-base structure where data are to be
extracted. Using these four specifications, the Retrieval Program produces a
set of data in the same format that is used to initially load the data in the
data base.

By using the level specification, the user has the capability to retrieve
statistical records for a parameter. For example, 10-minute data has its
primary data stored at level 2 of the data-base structure. In order to
retrieve the statistics that are stored in the 1-degree statistical records,
the retrieval level should be set to 1. Retrieved data would then consist of
100# records, where the 100# records (1-degree statistical records) contain
the statistics computed from va'lues for the 10-minute by 10-minute blocks that
are within the 1-degree by 1-degree block.

The user can optionally request the inclusion of test proposals in the
retrieved data. This is done through use of the variable, called K599, that
can be found on the 006# retrieval request record. If K599 is set to 1, the
output will include test proposals.

When the user requests the retrieval of test proposals, the proposed
value will replace the current accepted-value in the output. If 6-second
data are being retrieved, then for each 1-minute by 1-minute block (which
represents 100 6-second by 6-second blocks), the current accepted 6-second
values are replaced only if the 6-second by 6-second block has a corresponding
test proposal. If more than one test proposal is located for a block, the
latest test proposal is output. For 6-second data, the test proposals are
merged into a single proposal, beginning with the oldest test proposal and
proceeding to the newest test proposal.

41

Input

The input to the program is as follows:

Record (1) - Parameter Record - Read from unit 5

Col 1-30
Col 31-32
Col 33-34
Col 35-36
Col 37-38
Col 39-40
Col 41-50

Col 51-52
Col 53-60
Col 61-68
COL 69-72
Col 73-76
Col 77-79
Col 80

Record (2) - 005# -

Col 1-4
Col 5-10
Col 11-18
Col 19-48
Col 49
Col 50
Col 51-72
Col 73-80

Record (3) - 006# -

Col 1-4
Col 5-10
Col 11-16

Col 17
Col 18-24

Col 25
Col 26-31

Col 32
Col 33-39

Col 40-42

TITLE

INFIL

OUTFIL

OPT

-
AQNAME
DBNAME
PASSWD

USERID
KOBE

Read from

TYPE
-

AQNAME
PNAME

LEVEL
-

INSEQ

Read from

TYPE
-
INLT1

INLN1

INLT2

INLN2

7A4,A2
2X
12
2X
12
2X
1011
Element

1

2-10
2X
2A4
2A4
A4
4X
A3
Al

Title of run
Blank
Input-record device
Blank
Retrieved-data output device
Blank
Option Array
Value Content

0 Print diagnostics only
1 Print retrieved records
0 Unused

Blank
Study-unit name
Data-base name
Data-base password
Blank
User initials
P

user-selected unit

A4
6X
2A4
7A4,A2
IX
11
22X
18

same unit as

A4
6X
16

IX
17

IX
16

IX
17

3X

005#
Blank
Study-unit name
Parameter name (left-justified)
Blank
Level of retrieval
Blank
Nondecreasing sequence number

record (2)

006#
Blank
Minimum latitude, DDMMSS
(whole degrees)
Blank
Minimum longitude, DDDMMSS
(whole degrees)
Blank
Maximum latitude, DDMMSS
(whole degrees)
Blank
Maximum longitude, DDDMMSS
(whole degrees)
Blank

42

Col 43 K599 _ II Temporary inclusions flag
Col 44-72 - 29X Blank
Col 73-80 INSEQ 18 Nondecreasing sequence number

Record (4) - 999# - Read from same unit as record (2)

Col 1-4 TYPE A4 999#
Col 5-72 - 68X Blank
Col 73-80 INSEQ 18 Nondecreasing sequence number

There are several restrictions on the order of these records. Each 005#
record must be followed by at least one 006$ record. If this does not occur,
the program will be aborted. A 006# record cannot exist without a
corresponding 005# record. Retrieval requests can contain more than one 005#
record, providing each 005# record is followed by one or more 006# records.
This implies that any retrieval run can retrieve data for more than one
parameter. (Note: If the Retrieval Program obtains input to the Data-
Transformation Program, only retrieve one parameter at a time.) One 999#
record is required; this should be the last record.

Output

The output consists of:

(1) Messages - written to unit 6 (standard print file);
(2) Retrieved data - written to unit defined on parameter record

(usually a disk file); and
(3) Error messages - written to unit 21 (auxiliary print file).

In many cases, when an error occurs in the execution of this program,
the program will print an error message following the standard messages. The
error message will consist of an error code, a copy of the record being
processed, and the error message. The error code consists of 8 digits. The
first digit identifies the type of error. If set to 1, the error resulted
from incorrect input. This type of error can be corrected by the program
user. If set to 2, the error resulted from an attempt to execute a System
2000 (the DBMS) command. For this type of error, the user should contact the
computer staff responsible for the program. If the first digit is 9, the
error resulted from a logic fault within the program. When this occurs, the
computer staff should be contacted. The second through fourth digits of the
code identify the specific error. If the fifth digit is set to 0, the error
was not severe enough to cause the run to be aborted. If set to 1, the run is
aborted. If the first digit of the error code is 1, the seventh and eighth
digits identify the column where the input error is located. If the first
digit is 2, the sixth through eighth digits indicate the System 2000
completion code resulting from the execution of a System 2000 command. This
completion code needs to be given to the computer staff when they are
contacted about the error.

43

Sample Procedure

A procedure called DTRETV is used to execute the Retrieval Program. To
execute the Retrieval Program, the following JCL should be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.lijbrary,DISP=SHR
// EXEC DTRETV,NAMEl=output
//GORT.SYSIN DD *
parameter record
retrieval request records

The procedure used to execute the Retrieval Program is as follows:

//DTRETV PROG TIMEG=2,REG=740K,VOLl=rayvol,NAME1=NULLFILE,
// SP1=1,SP2=10,PROG=DTRETV,UNIT1=3350

//* DTRETV: A PROCEDURE TO RUN THE DATA BASE RETRIEVAL PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS(DEFAULTS IN PARENTHESES)
//*
//* TIMEG TOTAL RUN TIME (2)
//* REG REGION SIZE (740K)
//* UNIT1 RETRIEVAL PROGRAM OUTPUT DEVICE (3350)
//* VOL1 RETRIEVAL PROGRAM OUTPUT VOLUME (m/vol)
//* NAME1 RETRIEVAL PROGRAM OUTPUT DSNAME (NULLFILE)
//* PROG NAME OF LOAD MODULE TO BE EXECUTED (DTRETV)

/7 :,....I.....,,..,...,,....,...,..,....,...,...,..,,,..,,
//GORT EXEC PGM=&PROG,TIME=&TIMEG,REGION=®
//STEPLIB DD DSN=nK7lii>,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//* DEFINE THE STANDARD I/O DEVICES
//*
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//*
//* LOGICAL UNIT 11(DEFAULT) USED FOR OUTPUT OF RETRIEVED DATA
//*
//FT11F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),
// SPACE=(TRK,(6,6),RLSE),DSNAME=&NAME1
//*
//* LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
//* LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER
//*
//FT20F001 DD DSN=errorfile,DISP=SHR
//FT21F001 DD SYSOUT=A
//*

44

//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2fcparmsfile,DISPOSER
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=dataJbasefilel ,DISP=SHR
//dbname2 DD DSN=datajbasefile2,DISPOSER
//dJbname3 DD DSN=datajbasefile3,DISP=SHR
//dbname4 DD DSN=dataJbasefile4,DISP=SHR
//dJbnameS DD DSN=dataJbasefile5,DISPOSER
//dbname6 DD DSN=dataJbasefile6,DISPOSER

The General-Update Program

The General-Update Program is used to make random changes to permanent
data within the data base. The program uses the System 2000 (the DBMS) MODIFY
command to replace the existing values with new values. Because a modify is
used to update the data, the physical order of the data is not altered. This
program is intended to be used primarily by the DBA. To perform the updates,
the master password is required.

The program is designed to update 1-degree, 10-minute, 1-minute, and 6-
second data. For 1-degree, 10-minute and 1-minute data, the program replaces
all five statistical components (minimum, maximum, value, number of values,
and standard deviation) for each of the specified 1-degree, 10-minute or
1-minute records. For 6-second data, the user will input new values only for
the 6-second by 6-second blocks that are to receive new values. The program
will update one parameter per program execution. For all data densities, the
statistics are recomputed after all updates are completed. With this program
a value that is equivalent to the missing-value indicator (MVI) can be changed
or an existing value can be changed to the MVI.

45

Input

All input, except for the master password, is read from data set DATAIN.

It describes the parameter that is to beRecord 1
updated.

This is the 002# record

Record Type

Unit
Parameter

Sequence

Col
Col
Col
Col
Col
Col

1-4
5-10
11-18
19-48
49-72
73-80

A4 002#
6X Blank
2A4 Study-unit name
7A4,A2 Parameter name
24X Blank
18 Nondecreasing sequence

	number

Record 2: This record is the 007# record if updating 1-degree, 10-minute, or
1-minute data. The record contains the latitude and longitude of the
1-degree, 10-minute or 1-minute block and new values for the five statistics.
The input will contain one 007# record for each block that is to be updated.
The 007# record is formatted as follows:

Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col

1-4
5-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

Record Type

Lat

Lon

Min
Max
Value
Numpts
Stndev

Sequence

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

007#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
New value
Number of values
Standard deviation
Blank
Nondecreasing sequence
number

Record 2 is the 008# record if updating 6-second data. This record contains
the latitude and longitude of the 1-minute block and is formatted as follows:

008#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Nondecreasing sequence
number

Record 3: This record(s) is used when updating 6-second data. Each 008#
record is followed by a series of records that contain new values for some or
all of the 100 6-second by 6-second blocks contained within a 1-minute by
1-minute block. The records types are 801# through 810#. The 1-minute by

Col
Col
Col
Col
Col
Col
Col

1-4
5-10
11-16
17
18-24
25-72
73-80

Record Type
-

Lat
-

Lon
-

Sequence

A4
6X
16
IX
17
48X
18

46

1-minute block can be thought of as a 10x10 matrix of 6-second values. The
801# record represents the first (north) row of the 10x10 matrix; the 804//
record corresponds to the fourth row of the matrix; and so forth. Not all ten
rows are required to have new values, nor or all 10 points within a row
required. Hence, if the only rows that are to have new values are 5, 6, 7,
and 8, then the 008# record is followed by 805#, 806#, 807#, and 808# records.
Within these rows, only place values in the colums where a new value is to be
inserted into the data base. The formats of records 801$ through 810// are
identical:

Col 1-4 Record Type A4 801# through 810#
Col 5-10 - 6X Blank
Col 11-60 Values 1015 New values
Col 61-72 - 12X Blank
Col 73-80 Sequence 18 Nondecreasing sequence

number

The series 008#, 801//-810// are repeated as many times as necessary.

Last record: The last record in the input must be a 999#

Col 1-4 Record Type A4 999#
Col 5-72 - 68X Blank
Col 73-80 Sequence 18 Nondecreasing sequence

number

The master password is also read into the program using a separate input
unit.

Output

The output consists of two print files. The first file is the standard
print file. It contains information such as: parameter being updated; number
of updates; listing of update-request records; and error messages.

The second file is called the activity report. It contains specific
information on each data block that is updated. For parameters stored as 1-
degree, 10-minute or 1-minute data, the reports contains: latitude and
longitude; the new statistical-values; the previous permanent-value; and a
note if the old value was equivalent to the MVI or if the new value is
equivalent to the MVI.

For parameters stored as 6-second data, the information supplied is more
extensive. For each 1-minute by 1-minute block, the report contains the
latitude and longitude of the 1-minute by 1-minute block and a 10x10 matrix
of the 100 6-second values within the block. The new values are highlighted
with asteriks. The remaining values represent the current permanent-values
for those 6-second by 6-second blocks.

47

Sample Procedure

A procedure called DTGENUPD is used to execute the General-Update
Program. To execute the General-Update Program, the following JCL should be
used:

//... JOB ...
//PROCLIB DD DSN=procedure..ZiJbrary,DISP=SHR
// EXEC DTGENUPD
//GU.PASS DD *
master password

//GU.DATAIN DD *
update request records

The procedure used to execute the General-Update Program is as follows:

//DTGENUPD PROC TIM=2,REG=800K,PROG=DTGENUPD,SP1=1,SP2=10
/ /.j»-..<-.jt^i?^.Jt^^^.if^^j,^

//* DTGENUPD: A PROCEDURE TO RUN THE DATA BASE GENERAL-
//* UPDATE PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM TOTAL RUN TIME (2)
//* REG REGION SIZE (800K)
//* PROG LOAD MODULE NAME (DTGENUPD)
//*
/ /^'~.J~~t_'~~'~.<~~t^tut^At^tntAt^.X~'~J^^~^tAtAtAtAr^^o~^^^

//*

//GU EXEC PGM=&PROG,TIME=£TIM,REGION=®,PARM='ISA(12K)'
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=myIijb,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
I j-k

//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE REPORT FILE
//*
//REPORT DD SYSOUT=A
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2feparmsfiIe,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK

48

//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP-(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=datajbasefilel ,DISP=SHR
f/dbname2 DD DSN=datajbasefile2,DISP=SHR
//dbnameS DD DSN=datajbasefiIe3,DISP=SHR
//dbname4 DD DSN=datajbasefile4,DISP=SHR
f/dbnameS DD DSN=datajbasefile5,DISP=SHR
ffdbnamee DD DSN=datajbasefile6,DISP=SHR

The Instant-Update Program

The Instant-Update Program allows users to propose changes to data within
the data base; these proposed changes are called test proposals. When a
request is made to add a test proposal for a particular latitude-longitude
block and parameter, the test proposal is loaded in the data base as part of
the data belonging to the parameter, but the test proposal is kept separate
from the other data. This separate area is temporary in nature; the accepted
data reside in the permanent area of the data base. The Retrieval Program may
optionally retrieve the test proposals.

An example of the use of test proposals would be in modeling. After
test proposals are added to the data base, the data would be retrieved with
the request that test proposals be included within the output. Then, for any
permanent record within the retrieved area that has a corresponding test
proposal, the proposed value would replace the current accepted-value in the
retrieval output. After the retrieval, the data would be reformatted into
model input data using the Data-Transformation Program. During the modeling
process, the user may decide that some of the proposed values are better than
the permanent values. The user may then want the proposed values to replace
the corresponding permanent values. This is also done using the Instant-
Update Program. When a test proposal is marked as an accepted proposal, the
proposed value effectively becomes part of the permanent data for that
parameter. Conversely, if the user determines that some of the test proposals
are not satisfactory, the test proposals may be marked as rejected. This is
the third function of the Instant-Update Program. Once rejected, the proposal
effectively is no longer a part of the temporary data for that parameter.

Each test proposal is loaded into the data base as a separate record
within the temporary area of that parameter. The test proposal is identified
by its latitude, longitude, date and time added, and a flag. The flag
indicates that the record is a test proposal, an accepted proposal, or a

49

rejected proposal. Only one test proposal should be added per latitude-
longitude block per program execution. If more than one test proposal is
added for a particular block in the same execution, the date and time of the
proposal would be the same, and a later program execution would not be able to
distinguish among the test proposals. After test proposals have been added,
these proposals can be marked as rejected or accepted in subsequent executions
of the program. A typical program execution may consist of a mixture of the
three functions: adding test proposals, rejecting test proposals, and marking
test proposals as accepted.

The Instant-Update Program updates one parameter per run. The program
can be used to update 10-minute, 1-minute, and 6-second data. If more than
one of the three program functions are to be performed by a particular run,
the order must be:

1. Reject proposals
2. Accept proposals
3. Add test proposals

Only test proposals can be marked as rejected or accepted. A rejected
proposal cannot be changed to test or accepted, because logically it no longer
exists. An accepted proposal cannot be changed, because logically its
proposed value is part of the permanent data.

The program limits the number of test proposals per latitude-longitude
block to five. If five test proposals already exist, the user will not be
allowed to add another. A message to this effect is printed and a listing of
the five test proposals is provided. To add another test proposal, at least
one of the existing test proposals should be rejected. If the value stored in
the permanent data-area for the latitude-longitude block is the MVI, a
proposal is not allowed. Also, the proposed value cannot be the MVI. Only
the DBA can change the MVI to a valid value or a valid value to the MVI. A
proposal can only be added for a record that already exists in the permanent
area of the data base.

Record 1: This is the 002# record,
updated.

Col 1-4
Col 5-10
Col 11-18
Col 19-48
Col 49-72
Col 73-80

Record Type

Unit
Parameter

Sequence

Input

It describes the parameter that is to be

A4 002#
6X Blank
2A4 Study-unit name
7A4,A2 Parameter name
24X Blank
18 Nondecreasing sequence number

Record 2: This is the 599# record. It contains the name of the person
submitting the proposal changes. The person must be an authorized user of the
program. The record also contains the action code: 1 indicates that a test
proposal is to be marked rejected; 2 indicates that a test proposal is to be

50

marked accepted; and 3 indicates that a test proposal is to be added. If the
action code is I or 2, the 599# record also contains the date and time when
the proposal was added to the data base. This date and time can be found as
part of the output of a previous Instant-Update Program execution. If the
action code is 3, the date and time fields should be blank.

Col 1-4
Col 5-10
Col 11-35

Col 36
Col 37
Col 38
Col 39-44
Col 45-47
Col 48-53
Col 54-72
Col 73-80

Record Type

Person

Action

Date

Time

Sequence

A4 599#
6X Blank
6A4,A1 Person submitting changes

	(last name)
IX Blank
II Action code
IX Blank
A4,A2 Date proposal added (MMDDYY)
3X Blank
16 Time proposal added (HHMMSS)
19X Blank
18 Nondecreasing sequence number

Record 3: This is the 600# record. This record can take several forms
depending on the preceding 599# record. If the parameter being updated is 10-
minute, 1-minute, or 6-second data and the preceding 599# record contained an
action code of 1 or 2, the 600# record contains only the latitude and
longitude of the data block where a test proposal exists. The record will
appear as follows:

Version 1: 10-minute, 1-minute, or 6-second data - Action code 1 or 2

Record TypeCol 1-4
Col 5-10
Col 11-16
Col 17
Col 18-24
Col 25-72
Col 73-80

Lat

Lon

Sequence

A4 600#
6X Blank
16 Latitude (DDMMSS)
IX Blank
17 Longitude (DDDMMSS)
48X Blank
18 Nondecreasing sequence number

If the action code is 3 and the data are stored as 10-minute or 1-minute
data, then the 600# record contains not only the latitude and longitude of the
block but also the proposed value. In addition, the user may supply
statistics that were used to compute the proposed value. These statistics are
not required, but the proposed value must be present. The statistics are:
minimum, maximum, number of values, and standard deviation.

Version 2: 10-minute or 1-minute data - Action code 3

Col 1-4
Col 5-10
Col 11-16
Col 17
Col 18-24

Record Type

Lat

Lon

A4
6X
16
IX
17

600#
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)

51

Col 25
Col 26-30
Col 31-35
Col 36-40
Col 41-42
Col 43-45
Col 46-53
Col 54-72
Col 73-80

-
Min
Max
Value

-
Numpts
Stndev

-
Sequence

IX Blank
15 Minimum
15 Maximum
15 Proposed value
2X Blank
13 Number of values
F8.2 Standard deviation
19X Blank
18 Nondecreasing sequence number

If the action code is 3 and the parameter is 6-second data, the 600# record
contains only the latitude and longitude of the 1-minute block. It is
identical in format to version 1 of the 600# record. The 600# record is then
followed by a group of records that contain proposed values for some or all of
the 100 6-second by 6-second blocks contained within the 1-minute by 1-minute
block whose latitude and longitude is defined on the 600# record. These
records are type 701# through 710#. The 1-minute by 1-minute block can be
thought of as a 10x10 matrix of 6-second values. The 701# record represents
the first (north) row of the 10x10 matrix; the 704# record corresponds to the
fourth row of the matrix; and so forth. Not all ten rows are required to have
proposed values, nor are all 10 points within a row required. Hence, if the
only rows that are to have values proposed are 5, 6, 7, and 8, then the 600#
record should be followed by 705#, 706#, 707#, and 708# records. Within these
rows, only place values in the columns where a proposed value is to be
inserted. If the points 2, 3, 4, and 5 within a row are to have proposed
values, positions 1, 6, 7, 8, 9, and 10 should be blank. The formats of
records 701# through 710# are identical:

Record 4: 6-second data - Action code 3

Col 1-4
Col 5-10
Col 11-60
Col 61-72
Col 73-80

A4
6X
1015
12X
18

701# through 710#
Blank
Proposed values
Blank
Nondecreasing sequence number

Record Type

Values

Sequence

The series 600#, 701#-710# are repeated as many times as necessary.

Last Record: The last record in the input must be a 999# record

Record Type

Sequence

Col 1-4
Col 4-72
Col 73-80

A4
68X
18

999#
Blank
Nondecreasing sequence number

The following examples are given to make description of input more
easily understood:

Example 1: Adding test proposals for parameters stored as 10-minute or 1-
minute data.

002#
599#
600#

NEBRASKAPUMPAGE - 1978
LUCKEY 3
400000 1012000 720

52

600#
600#
999#

400000 1012100 730
400000 1012200 740

Each of the 600# records represents a 1-minute by 1-minute block within the 1-
minute parameter PUMPAGE - 1978. If the parameter was stored as 10-minute
data, each 600# record would represent a 10-minute by 10-minute block.

Example 2: Adding test proposals for a parameter stored as 6-second data.

002#
599#
600#
701#
702#
703#
600#
703#
704#
705#
600#
707#
708#
709#
710#
999#

NEBRASKAWATER TABLE - 1960
LUCKEY 3
405000 1013000
2520 2530 2549 2550
2510 2515 2520 2560
2570 2580 2590

405000 1013100
2770 2761 2752 2743
2766 2757 2748 2739 2730

2770 2761 2753 2745 2736
400000 1013200
2505 2495 2415 2477 2468
2510 2500 2490 2480
2517 2506 2495
2520 2509

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Each 600# record represents a 1-minute by 1-minute block; each value on the
701//-710// records is a proposed value for a 6-second by 6-second block within
the 1-minute by 1-minute block. The position of the 6-second by 6-second
block is determined by the record type and the position in the record. For
example, a value in row 6 is placed in record type 706$, and the value found
in columns 11-15 is the first value in that row.

Example 3: Mixture of actions.

002#
599#
600#
599#
600#
599#
600#
999#

NEBRASKAPUMPAGE - 1978
LUCKEY
400000 1012000
LUCKEY
400000 1012100
LUCKEY
400000 1012200

1 083181 124536

2 091581 073126

650

The first 599# record
data 8/31/81 and time
600# record gives the
be rejected. If test
same run as this one,
indicates that a test

indicates that a test proposal that was added on the
12:45:36 is to be marked as rejected. The following
latitude and longitude of the test proposal that is to
proposals for other data blocks had been added in the
other 600# records could follow. The second 599# record
proposal added at the given date and time is to be

53

marked as accepted. The following 600# record gives its position. Other
proposals added on that date and time could also be marked accepted with other
600# records. The third 599# record indicates that a test proposal is to be
added. The position and test value is given on the following 600# record.

Output

The output consists of three print files. The first file is the standard
print file. It contains information such as: person submitting proposal
changes; parameter being updated; number of proposals rejected, accepted, or
added; and a listing of the input request records.

The second file is called the activity report. It contains specific
information on each proposal that is rejected, accepted, or added. For
parameters stored as 10-minute or 1-minute data, this report gives:

A. For a rejected proposal:
1. Latitude of rejected proposal
2. Longitude of rejected proposal
3. Date proposal was added to data base
4. Time proposal was added to data base
5. Rejected proposed-value
6. Current permanent-value

B. For an accepted proposal:
1. Latitude of accepted proposal
2. Longitude of accepted proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. Previous permanent-value
6. New accepted-value

C. For a test proposal:
1. Latitude of test proposal
2. Longitude of test proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. Proposed value
6. Current permanent-value

For parameters stored as 6-second data, the information supplied in the
activity report is more extensive. The report gives:

A. For a rejected proposal:
1. Latitude of rejected proposal
2. Longitude of rejected proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10x10 matrix of the 100 values within the 1-minute by 1-minute

block. The rejected proposed-values are highlighted with asterisks.
The remaining values represent the current permanent-values for
those 6-second by 6-second blocks.

54

B. For an accepted proposal:
1. Latitude of accepted proposal
2. Longitude of accepted proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10x10 matrix of the 100 values within the 1-minute by 1-minute

block. The new accepted-values are highlighted with asterisks. The
remaining values represent the current permanent-values for those
blocks.

C. For a test proposal:
1. Latitude of test proposal
2. Longitude of test proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10x10 matrix of the 100 values within the 1-minute by 1-minute

block. The new proposed-values are highlighted with asterisks. The
remaining values represent the current permanent-values for those
blocks.

The activity report also contains information on update requests that
could not be accomplished. For example, if a proposed value is equal to the
MVI, the proposal would not be added and the activity report would contain a
message to this effect. If the proposal was for 6-second data, the message
contains the position in the 100 6-second by 6-second blocks where the problem
occurred. This location is a number between 1 and 100, where positions 1 to
10 describe the first row of data, positions 11-20, the second row of data,
and so forth. Note that even if one of the proposed values is not allowable,
the test proposal for the entire block will not be added.

The third file is for error messages. In the vast majority of cases,
possible errors within the program are related to System 2000 (the DBMS)
processing. These errors should not occur frequently; but, if an error does
occur, a message is printed in the error file and the run is aborted. The
DBA should be contacted, because some of these errors could result in the data
base being damaged. When the data base is damaged, the Instant-Update Program
cannot be run properly. If a severe error does occur, a warning is given in
the standard print file that directs the user to look at the error message
file.

Sample Procedure

The procedure used to execute the Instant-Update Program is called
DTEDITIU. This procedure is a two-step process. The first step executes the
Edit Program. The input to the Edit Program is a parameter record plus the
update request records (that is, 002#, 599#, 600#, and so forth) for the
Instant-Update Program. The Edit Program checks the syntax of these records
as well as other types of checks. If a record is determined to be correct,
the Edit Program writes this record to a file. This file is passed to the
second step of the procedure, the execution of the Instant-Update Program.

55

Certain errors, such as incorrect person's name or parameter name, are
considered to be fatal errors. If fatal errors are detected by the Edit
Program, the second step of the procedure is not executed. Other errors may
be severe enough to cause a particular group of records to be rejected, but
not severe enough to prevent the second step from being executed. If, for
instance, the rejected record is type 599//, then its corresponding 600// (and
possibly 701// through 710//) records are also rejected, whether they are
correct or incorrect. It is possible that only part of the update request
records are passed to the second step of the procedure.

As part of its output, the Edit Program has a separate section of the
printout where error messages are listed. These error messages are explained
in the section on the Edit Program. The Edit Program output also contains the
number of input records read, the number of errors detected, and the number
of fatal errors. Fatal errors are errors that prohibit the second step from
being executed.

To execute the Instant-Update Program, the following JCL should be
used:

// ... JOB ...
//PROCLIB DD DSN=procedure.Iijbrary,DISP=SHR
// EXEC DTEDITIU,MEMBER=COCF266A
//GOED.SYSIN DD *

Parameter record
Update request records

//

On the EXEC statement (third record), the parameter MEMBER must be defined.
This parameter is the name to be given to a member of a data set that will
contain information about a particular execution of the Instant-Update
Program. This information is used by the DBA to monitor the activity of the
program. This parameter consists of 8 alphanumeric characters. Characters 1
and 2 are the state name abbreviation. Characters 3 and 4 are the user's
initials. Characters 5 through 7 are the Julian day. Character 8 is a letter
from A to Z to be used to differentiate among executions on the same day.

In the input, the Instant-Update Program request records are preceded by
the Edit Program parameter record. This record contains information necessary
to the proper execution of the Edit Program. The record is as follows:

Col 1-30 Title 7A4,A2 Title of run
Col 31-32 - 2X Blank
Col 33-34 Input 12 Should be set to 5
Col 35-36 - 2X Blank
Col 37-38 Output 12 Device where edited records are

written, set to 11
Col 39-40 - 2X Blank
Col 41-50 Options 1011 Execution options:

Element Value
1 0
2 0-print diagnostics

1-print all input records

56

3 0
4 4
5-10 0 or blank

Col 51-52 - 2X Blank
Col 53-60 Study unit 2A4 Study-unit name
Col 61-68 Data base 2A4 Data-base name
Col 69-72 Password A4 Password with update authority
Col 73-76 - 4X Blank
Col 77-79 Userid A3 User initials
Col 80 Kode Al Set to P

The procedure used to execute the Instant-Update Program is as follows:

//DTEDITIU PROC TIM1=1 ,TIM2=1 ,REG1=750K,REG2=770K,PROG1=DTEDIT3,
// PROG2=DTIUPD, MEMBER=, SP1=1,SP2=10
/ /J^JUXJl.JLJl.JU*i^JLJl.JUX^
/ / /\ /\ /\ /\ t\ /\ f\ /\ y\ t\ 4\ /\ t\ /\ /\ /\ /\ /v /v /^ /\ t\ /\ /\ M /v /\ /\ /\ /\ <"\ /% /\ /\ /\ /\ /\ /\ /\ /\ /\ /v /\ /\ /\ f\ t\ /\ /*» /\ /\ /\ /\ /\ /s /\ /\ /\ /\ /v /\ /\ /\ /\ /v /\ /\ /v

//* DTEDITIU: A PROCEDURE TO RUN THE INSTANT -UPDATE PROGRAM
//* IN CONJUNCTION WITH THE DATA BASE EDIT PROGRAM.
//* STEP 1 TAKES THE INPUT TO THE INSTANT-UPDATE PROGRAM AND
//* CHECKS THE CORRECTNESS OF THE DATA USING THE EDIT PROGRAM.
//* IF THE EDIT IS SUCCESSFUL, STEP 2 IS EXECUTED. THIS IS
//* THE INSTANT-UPDATE STEP.
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM1 TOTAL RUN TIME EDIT STEP (1)
//* TIM2 TOTAL RUN TIME INSTANT-UPDATE STEP (1)
//* REG1 REGION SIZE EDIT STEP (750K)
//* REG2 REGION SIZE INSTANT -UPDATE STEP (770K)
//* PROG1 LOAD MODULE NAME EDIT STEP (DTEDIT3)
//* PROG2 LOAD MODULE NAME INSTANT -UPDATE STEP (DTIUPD)

MEMBER NAME OF PDS MEMBER FOR DBA INFORMATION FILE

/ /^JL^^^^^I_^^^^^^^yf^^^

//*

//* STEP 1: EDIT
//*
//GOED EXEC PGM=&PROG1,TIME=&TIM1,REGION=®1
//STEPLIB DD DSN=nre/l:Lb,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//* DEFINE STANDARD I/O DEVICES
//*
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//*
//* DEFINE OUTPUT FILE
//*
//FT11F001 DD DSN=&&EDOUT, UNI T=SYSDK,DISP=(, PASS),VOL=,

57

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),SPACE=(TRK,(3,3),RLSE)
/ />v
//* LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
//* LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER
//*
//FT20F001 DD DSN=errorfile,DISP=SHR
//FT21F001 DD SYSOUT=A
//*
//* DEFINE FILES CONTAINING PARAMETER AND USERS' NAMES
//*
//FT22F001 DD DSN=userfiJe,DISP=SHR
//FT23F001 DD DSN=parmsfile,DISP=SHR
//*
//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2fcparmsfiIe,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=data£>asefiJel ,DISP=SHR
//dbname2 DD DSN=data£>asefiJe2,DISP=SHR
//dbnameS DD DSN=data£>asefiJe3,DISP=SHR
//dbname4 DD DSN=datajbasefiJe4,DISP=SHR
//dbname5 DD DSN=datajbasefiIe5,DISP=SHR
//dbname6 DD DSN=datajbasefiIe6,DISP=SHR
//*
//*
//IU EXEC PGM=&PROG2,TIME=&TIM2,REGION=®2,PARM= f ISA(23K) f ,
// COND=(13,LT,GOED)
//*
//* STEP 2: INSTANT UPDATE
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=myI:Lb,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//*

58

//* DEFINE STANDARD I/O DATA SETS
//*
//DATAIN DD DSN=&&EDOUT,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE REPORT AND ERROR FILES
//*
//REPORT DD SYSOUT=A
//REPORT2 DD SYSOUT=A
//ERRFIL DD SYSOUT=A
//*
//* DEFINE DBA INFORMATION FILE
//*
//DBAINFO DD DSN=di>ainfofiIe(&MEMBER),DISP=OLD
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2fcparmsfiIe,DISPOSER
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE-(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=datai)asefiJel ,DISP=OLD
//dbname2 DD DSN=datai)asefiIe2,DISP=OLD
f/dbnameS DD DSN=datai)asefile3,DISP=OLD
//dbname4 DD DSN=datai>asefi!e4,DISP=OLD
//dbnameS DD DSN=datai)asefiJe5,DISP=OLD
//dbname6 DD DSN=datai>asefiIe6,DISP=OLD

The Move Program

The Instant-Update Program gives users of the DMS an opportunity to
propose changes to values within the data base. Details of that process can
be found in the documentation for the Instant-Update Program. With that
program, the user can perform three tasks:

59

1. Add test proposals;
2. Accept test proposals; and
3. Reject test proposals.

When a. test proposal is added to the data base, it is stored separately from
the permanent data. A flag is set in the test proposal record to indicate
that this is a test proposal. At some point, the user may want to mark a test
proposal as rejected and have it removed from the data base. In this case,
the Instant-Update Program changes the flag to indicate that the proposal is
rejected; the program does not physically remove the proposal record from the
data base. Alternatively, the user may want to mark a test proposal as an
accepted proposal; the Instant-Update Program changes the flag to indicate
that the proposal contains an accepted value that is to replace the current
permanent-value. The program does not perform the replacement operation; the
process of removing a rejected proposal from the data base and replacing a
permanent value is a function of the Move Program. In all, the Move Program
performs four tasks for each parameter:

1. Rejected proposals are removed from the data-base using the
System 2000 (the DBMS) REMOVE TREE command.

2. Accepted proposals are located and the accepted values replace the
present permanent-values, using the System 2000 MODIFY command.

3. The existing test proposals are examined and, if any proposals
have existed longer than a set duration, they are removed.

4. If permanent values are changed, the parameter statistics are
recomputed.

The Move Program has two modes of operation. The above tasks can be
performed for all parameters in the data base or for selected parameters.
The second mode of operation will usually be used because, at any one time,
proposals likely will not exist for all the parameters in the data base. A
guide to which parameters have proposals is found in the DBA information file
produced by each execution of the Instand-Update Program.

The first step in processing a parameter is to retrieve information
stored in the root-level record, including a flag that indicates whether
proposals exist for the parameter. This flag is set by the Instant-Update
Program and indicates precisely what types of proposals currently are within
the data base. If the flag indicates that rejected proposals exist, then the
program locates the rejected proposals and removes them from the data base.
If the flag indicates that accepted proposals exist, then the program locates
the accepted proposals and corresponding permanent data-records. Then, all
five statistical components (minimum, maximum, value, number of values, and
standard deviation) are replaced in the permanent data-record and the accepted
proposal is removed from the data base. If the flag indicates that test
proposals exist, they are examined, and if any of these proposals have existed
longer than a set duration, they are removed from the data base.

60

Input

The first record contains a password having the proper update authority,
the study-unit name, and a code indicating the mode of operation. If the
code is 1, all the data-base parameters are processed and this record is the
only input record. If the code is 2, only selected parameters are processed
and the parameter names are input. The format of record 1 is as follows:

Col 1-4 Data-base password, left-justified
Col 5-12 Study-unit name
Col 13 Operation code

If the code is 2, then the parameter names are input, one per record, as
follows:

Col 1-30 Parameter name, left-justified

If the code is 1, the parameter names are obtained from a file which contains
the names of all parameters stored in the data base.

Output

The output consists of a printed report containing the data-base cycle
information at the point when the data base is opened and at the point when
all move operations have been performed. For each parameter processed, the
report contains the following:

1. Name of parameter;
2. Root-level record statistics prior to the move operations;
3. Geographic coordinates of the blocks with new permanent-values;
4. Root-level record statistics after the move operations; these are

listed only if the statistics are recomputed;
5. Number of rejected proposals removed;
6. Number of test proposals removed;
7. Number of accepted proposed-values moved to permanent part of

the data base.

At the end of the report is a message that indicates whether the program
terminated normally or abnormally. Abnormal termination would usually be the
result of a failure in System 2000 (the DBMS) processing. If this message is
printed, the computer staff responsible for the program should be contacted.

Sample Procedure

A procedure called DTMOVE is used to execute the Move Program. To
execute the Move Program, the following JCL should be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.2ijbrary,DISP=SHR

61

//STEPNAME EXEC DTMOVE
//MOVE.DATAIN DD *

input records
//

The procedure used to execute the Move Program is as follows:

//DTMOVE PROC TIM=2,REG=840K,PROG=DTMOVE,SP1=1,SP2=10
/ /.'~'^'--'^'-^'-^'-^'«<^'~'«<~'«<_'-~i.^>-~'^'--'~'^'-^

//* DTMOVE: A PROCEDURE TO RUN THE DATA BASE MOVE PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM TOTAL RUN TIME (2)
//* REG REGION SIZE (840K)
//* PROG LOAD MODULE NAME (DTMOVE)
//*
/ /w«-^<-^^'.^»~»^J-y^!-^^^l.^W

//MOVE EXEC PGM=&PROG,TIME=&TIM,REGION=®,PARM='ISA(20K)'
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=royIijb,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE FILE CONTAINING PARAMETER NAMES
//*
//PARMS DD DSN=parrosfiIe,DISP=SHR
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2fcparmsfi.Ze,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))

62

//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//dbnamel DD DSN=datajbasefiIel ,DISP=OLD
//dbname2 DD DSN=datajbasefiIe2,DISP=OLD
//dbnameS DD DSN=datajbasefiIe3,DISP=OLD
//dbname4 DD DSN=datafcasefile4,DISP=OLD
//dbname5 DD DSN=data£>asefiIe5,DISP=OLD
//dbname6 DD DSN=datajbasefiIe6,DISP=OLD

The Statistics Program

When a parameter is initially loaded into the data base, the statistical
components (minimum, maximum, average, number of values, and standard
deviation) are assigned values only at the base level of the data-base
structure. Of the statistical components, the average is the only component
that must be assigned a value. Calculating all the statistical components at
the levels above the base level of the data-base structure is the function of
the Statistics Program. This program is run after the Load Program, the
General-Update program, and is usually run after the Move Program.

The Statistics Program calculates statistics for one parameter per
program execution. The process by which these statistics are computed is
basically the same for each data density except for a slight variation for
6-second data. Using the values at the base level, statistics are computed at
each higher level. For example, to calculate statistics for a 10-minute
statistical record at level 2 for 1-minute data, all values for 1-minute by
1-minute blocks within a 10-minute by 10-minute block are used. From these
values, the minimum, maximum, average, number of values, and standard
deviation are computed for the 10-minute statistical record. These five
statistics are then placed in the data base in the record representing the
10-minute by 10-minute block. Similarly, values for all of the 1-minute by
1-minute blocks within a 1-degree by 1-degree block are used to calculate the
same five statistics for the 1-degree statistical record at level 1. This
process continues and a set of five statistics that reflect all the 1-minute
by 1-minute blocks for a parameter are stored in the root-level record.

There is a slight variation in the procedure for 6-second data; because,
when 6-second data are loaded, statistics for the 1-minute statistical
records, at level 3, are calculated by the Load Program. The Statistics
Program takes advantage of this fact when statistics are computed at higher
levels of the data-base structure. For example, the sum of the 6-second
values can be calculated by multiplying the number of values by the average
found on the 1-minute statistical record. This sum can be used to calculate
the overall average for the 10-minute by 10-minute and 1-degree by 1-degree
blocks. Hence, the statistics for the 10-minute and 1-degree statistical
records can be determined without actually retrieving the 6-second values.
This procedure saves a great deal of processing. As with the other densities,
the end result is statistics that reflect all the 6-second by 6-second blocks
within the study area for that parameter. These final statistics are stored
in the root-level record.

63

Input

The input is one record containing the following:

Col 1-4 Data-base password with the proper update authority
Col 5-12 Study-unit name
Col 13-42 Parameter name

Output

The output consists of a 1-page printed report providing basic
information about the calculated statistics. The output includes the study
unit and parameter names for which the statistics are being computed. In
addition, data-base cycle information is provided for the points at which the
data base is opened and at which the data base is closed after the statistics
are successfully computed. Finally, the computed root-level statistics are
printed.

Sample Procedure

A procedure called DTSTAT is used to execute the Statistics Program. To
execute the Statistics Program, the following JCL should be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.lijbrary,DISP=SHR
//STEPNAME EXEC DTSTAT
//STAT.DATAIN DD *

single input record
//

The procedure used to execute the Statistics Program is as follows:

//DTSTAT PROC TIM=2,REG=670K,PROG=DTSTAT,SP1=1 ,SP2=10
/ /._t-..«-~t-..»--«-~«~'-.j^.j^^.j'...«^^^

//* DTSTAT: A PROCEDURE TO RUN THE DATA BASE STATISTICS
//* PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM TOTAL RUN TIME (2)
//* REG REGION SIZE (670K)
//* PROG LOAD MODULE NAME (DTSTAT)

tt «.._..

//STAT EXEC PGM=&PROG,TIME=&TIM,REGION=®,PARM='ISA(5K) f
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=myJjub,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS

64

//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
/ /«*- //"
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2kparmsfiIe,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
f/dbnamel DD DSN=datai>asefi.Zel ,DISP=OLD
//dbname2 DD DSN=datajbasefile2,DISP=OLD
//dbnameS DD DSN=datajbasefiIe3,DISP=OLD
//dbname4 DD DSN=datajbasefiIe4,DISP=OLD
f/dbname5 DD DSN=datajbasefiIe5,DISP=OLD
//dbnameS DD DSN=datajbasefiIe6,DISP=OLD

The Reload Program

The Reload Program is designed to unload the data from an existing data
base (i.e. a data base as described by this report) and to then load the data
into a new data base. For purposes of the following discussion, the existing
data base will be called the 'old' data base. The two main purposes for
using this program are to reorganize the old data base or to place the old
data base on a storage device that has different efficient block sizes for
files. In either case, the new data base is completely reorganized. All
tables, such as the index and distinct-value tables, are reconstructed and
compacted. The data table is also compacted and all reusable space is
eliminated. For the new data base, the data-base cycle number, at the end of
the program execution, is equivalent to the number of parameters stored in the
old data base. The program is set up to reload 1-degree, 10-minute, 1-minute,
and 6-second data.

Since the other programs in the data-management system are set up to
work with the old data base, the next step in the process would be to save the
new data base and to restore it to the old data base. When this has been
done, the old data base will be available in its reorganized form.

65

It is possible to reload or reorganize a data base using the System 2000
(the DBMS) REORGANIZE and RELOAD commands. However, it has been determined
that these methods are not as efficient as using the Reload Program. The
Reload Program requires less processing time, computer memory, and scratch
file usage.

Input

The only input to the program are the master passwords for the data
bases. Both passwords are input on the same record. Columns 1-4 are for the
new data-base password and columns 5-8 are used for the old data-base
password. The passwords are read from data set DATAIN.

Output

The output consists of a list of the parameters that were reloaded into
the new data base.

Sample Procedure

A procedure called RLDDTL is used to execute the Reload Program. To
execute the Reload Program, the following JCL should be used:

//... JOB ...
//PROCLIB DD DSN=procedure.!i£»rary,DISP=SHR
// EXEC RLDDTL
//GO.DATAIN DD *

master passwords

The procedure used to execute the Reload Program is as follows:

//RLDDTL PROC REGG=1500K,TIMEG=50,SP1=1,SP2=10,PRMS=XPARMS
/ /^..>^».^j^-.j«^u^,.u..>-j-^^j^'-.j«f^^^

//* RLDDTL: A PROCEDURE TO RUN THE DATA BASE RELOAD PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIMEG TOTAL RUN TIME (50)
//* REGG REGION SIZE (1500K)
//* PRMS SYSTEM 2000 BUFFER POOLS (XPARMS)
//*
/ /^^tf^^^^^j_^^^^_i^t^i,^^^

//*
//GO EXEC PGM=RLDDTL,REGION=®G,TIME=&TIMEG,PARM='ISA(22K)'
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=myliJb,DISP=SHR
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR

66

//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=132,BLKSIZE=1320)
//S2KPARMS DD DSN=s2fcparmsfile,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//LOCATE01 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDA
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDA
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP==(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS03))
//S2KSYS07 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDA
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDA,SEP=(SF01))
//olddbl DD DSN=dataJbasefiIel,DISP=OLD
//olddb2 DD DSN=datajbasefile2,DISP=OLD
//olddb3 DD DSN=datajbasefile3,DISP=OLD
//olddb4 DD DSN=datajbasefile4,DISP=OLD
//olddbB DD DSN=datajbasefile5,DISP=OLD
//olddb6 DD DSN=datajbasefi.Ze6,DISP=OLD
//newdbl DD DSN^newdatabasefilel ,DISP=OLD
//newdb2 DD DSN=newdatajbasefile2,DISP=OLD
//newdbS DD DSN=newdatajbasefiie3,DISP=OLD
//newdb4 DD DSN=newdatajbasefile4,DISP=OLD
//newdbS DD DSN=newdatajbasefile5,DISP=OLD
//newdb6 DD DSN=newdatajbasefile6,DISP==OLD

Note: In the above procedure, olddb is the first 7 characters of the old
data-base name and newdb is the first 7 characters of the new
data-base name.

The Data-Transformation Program

The Data-Transformation Program prepares the input for the finite-
difference ground-water flow model (Trescott and others). The program is
divided into two phases. The first phase converts data retrieved from the
data base into (X, Y, value) triplets. The second phase uses the (X, Y,
value) triplets to calculate a value for each block within a model.

In the first phase, latitude and longitude are converted to plane
coordinates X and Y by Lambert's Conformal Projection, with standard parallels
at 33 and 45 degrees, and with the central meridian at 96 degrees west of
Greenwich. These results are then rotated by an angle specified by the user.

67

The second phase looks at each (X, Y, value) triplet that was determined
in phase 1 and locates the model block which contains the point. After all
the points have been properly located within the model, an interpolation is
performed to determine a value for each model block. This interpolation may
take the form of an average, weighted-average, or trend-surface analysis.

Prior to executing this program, the user must first retrieve data from
the data base. Details of this retrieval can be found in the documentation
for the Retrieval Program.

Criteria for Retrieving from Data Base

The amount of data retrieved depends on the selected interpolation
technique. The average or weighted-average interpolation techniques will use
only data that fall within the model to compute values for the model matrix.
However, the program does detect if the data retrieved fall outside the model,
and the program will eliminate these data from any further use. This is done
because it is not likely that the user can retrieve only the data that fall
within the model.

For trend-surface analysis, all retrieved data are used unless the
analysis is done with 6-second data. If the user wants results in the model
matrix to reflect the "local anomalies" within the model, then the retrieval
should be limited to the area covered by the model. If the user is more
interested in "regional trends," the retrieval can cover a larger area. The
area retrieved to determine regional trends can be as large as the entire
study area. However, if the retrieved data cover an area larger than the
model, the resultant model matrix may not reflect the values within the model
as they are stored in the data base. This is because the model matrix was
determined using values outside the model area.

For 6-second data, the program limits the trend-surface analysis to data
that falls within the model. There are two reasons for this limitation.
First, in many cases, the trend-surface technique is not the best choice for
use with 6-second data. There may be a sufficient number of 6-second values
within the model to use another interpolation technique. Second, if all the
retrieved 6-second data were used to compute the trend surface and the model
matrix, the computer costs could possibly get very large because of the
extensive amount of processing performed by the program. Because of this,
prior to doing an extensive amount of processing, the program makes an
estimate of the number of 6-second values within the model. If this estimate
is greater than 1600 values, the run is aborted, and the user is asked to
rerun the program using a different interpolation technique.

When using average or weighted-average interpolation, the user has three
additional options for 6-second data. First, only 6-second values can be used
to determine the model matrix. Second, only the 1-minute averages for the
6-second data can be used to determine the model matrix. Third, a mixture of
6-second values and 1-minute averages can be used. For the first and third
options, 6-second data are retrieved from the data base; for the second

68

option, the 1-minute statistics for 6-second data are retrieved. This option
is explained in the documentation for the Retrieval Program. For trend-
surface analysis, the program does not allow a mixture of 6-second values and
1-minute averages.

Model-Core Determination

Model-core determination is a process that is used with 6-second data.
The process divides the model into two regions. The first region is called
the model core and is the area where 6-second values will be used to compute
the model matrix. The second region, that portion of the model that borders
the core, is the area where 1-minute averages for the 6-second data will be
used to compute the model matrix.

The model core is used because of the possibility that, using 6-second
data, the model could contain a very large amount of data. With that large
amount of data, computer processing time and costs could become excessive.
By using 1-minute averages in the outer rows and columns of the model,
processing time and cost is greatly reduced.

The first step in automatic determination of the model core is to
calculate the area of a 1-minute by 1-minute block at the latitude and
longitude of the principal node. This area, the standard comparison area,
contains exactly one 1-minute value. Then, starting at the block that
contains the principal node and proceeding outward along the column that
contains the principal node, areas of the model blocks are calculated. The
ratio of the area of the block to the standard comparison area yields an
estimate of the number of 1-minute values within that block. If that number
is less than a predetermined number, usually five, then that block is
considered to be within the model core. This process continues along the
column of the principal node (in both directions) until the model core extent
is determined. The first block at which the estimate of the number of
1-minute values equals or exceeds five is considered to be the first block
outside the model core. This procedure is repeated in both directions along
the row that contains the principal node. The end result of this process
is the row and column extremes of the model core. The number five was chosen
as the comparison value, because, with this number of 1-minute values within a
block, a reasonable result can be computed for the model matrix by using an
average or weighted-average interpolation.

This procedure does have limitations. For many model configurations,
this process will not be able to determine a model core. This can occur if
the blocks are very small in the central region of the model. This could lead
to small blocks being found in the peripheral areas of the model. Under these
circumstances, the outer blocks along the column and row of the principal
node could easily contain less than five 1-minute values. To alleviate this
problem, the program allows the user to optionally input the row and column
extremes of the model core. In this case, the program calculates the model
core as requested by the user. In addition, if the user wants the program to
compute the model core, the comparison number of points can be changed. By
changing this value, it is possible that the program could successfully
compute the model core.

69

Interpolation Techniques

There are three interpolation techniques available for determining the
model matrix: average, weighted-average, and trend-surface analysis (Davis,
1973). Use of each of these techniques depends on several factors. In
general, average and weighted-average techniques are useful when the density
of data within the model is large, while the trend-surface analysis is useful
when the data are sparse.

There are two factors that will greatly effect the density of data within
a model: (1) Density of the data as it is stored within the data base, and
(2) distance between the nodes of the model. A general guideline for
determining which technique to use is: if the distance between nodes in the
model is less than the distance between data in the data base, then the
trend-surface analysis would be the appropriate choice. In this case, it is
likely that only one or possibly no data points fall within a model node and
an average or weighted-average interpolation may not be appropriate.

With these facts in mind, we recommend the following. With 10-minute
data, generally use the trend-surface technique. However, with a very coarse
model grid it will be possible to get relevant results by using an average or
weighted-average interpolation. With 1-minute and 6-second data, generally
use an average or weighted-average interpolation unless the model grid is
very fine.

The program allows the user to do a trend-surface analysis with 6-second
data. However, if the program estimates that there are more than 1600
6-second values within the model, the run will be aborted and a message will
be printed suggesting the user rerun the program with a request for a
different interpolation technique. This is done, because, with more than 1600
values in the model, one will most likely obtain better results with an
average or weighted-average interpolation.

Average

For each (X, Y, value) triplet, the averaging routine determines which
model block contains the point. For each block within the model, a sum of
the values within the block is calculated. After all the points have been
located within the model, the sum of the values is divided by the number of
points within the block and this result is assigned to that model block.
These results are output as the model matrix.

Weighted Average

The weighted-average routine is very similar to the average routine.
The difference occurs after a point is located within the model. The distance
between the point and the center of the model block which contains the point
is calculated. The program calculates: (1) The data-base value divided by
the square of the distance and (2) the reciprocal of the square of the
distance. Sums of each of these results are kept for each model block. After
all the points have been properly located, these quantities are divided and
the result is assigned as the value for that model block. The calculation for
each block is as follows:

70

Value = I (value/D2) / I (1/D2)

where D2 = square of the distance and the sums are over all the points in the
model block.

For both of the above techniques, it is possible that some of the model
blocks will not have any available data for computing a value. If the output
format is F10.4, the block will be assigned a -999999999. If the format is
F4.0, the block will be assigned a -999.

If a point is located on the line between two columns of the model, the
point is used to determine the value for both blocks. The same thing is done
if the point falls on the line between two rows of the model.

Trend Surface

This interpolation routine works quite differently from the others. The
user must input the order of the polynomial that is to be determined by the
program. If the order is one, the data will be fitted to a plane surface.
Orders of two, three, and four fit the data to more complicated surfaces. A
limitation of four has been placed on the order of the polynomial. If a
number larger than four is input, the program will be aborted.

With the order of the polynomial, the number of coefficients to be
determined and the number of points required are:

Number of
Order Coefficients points required

1 3 3
26 4
3 10 5
4 15 6

The trend-surface technique uses all of the data to determine the
polynomial. Values for each model block are obtained by solving the
polynomial using the X and Y of the center of the block. This value is then
placed in the model matrix. All blocks within the model are assigned a value

As the trend-surface routine is determining the polynomial, it keeps
count of the number of points being used. If this number is larger than 500,
the program prints a message indicating the number of points used. This is
done because with more than 500 points within the model, it is possible that
the average or weighted-average technique will give better results. The
routine does not abort and it will use all the points to compute the
polynomial.

General Information

All three interpolation programs allow two different output formats for
the model matrix--8F10.4 and 20F4.0. The first output format poses no problem
in that all significant digits of the result can fit within that format. The

71

second output format poses a problem in that many of the values have more
than four significant digits. The program outputs the four most-significant
digits. A message is printed indicating the factor by which each value was
multiplied to output these four most-significant digits.

Program Flow

Flow of the program depends on the density of the data retrieved from
the data base:

1. Ten-minute Data: With 10-minute data, the model grid may be regular
or irregular. Because the amount of data-base input is usually small, no
model-core determination is necessary nor is it an allowable option. If the
user requests average or weighted-average interpolation, the program will
eliminate any data that does not fall into the model area. If trend-surface
analysis is requested, all the data are used for determining the model matrix.

2. One-Minute Data: With 1-minute data, the model grid may be regular
or irregular. Because the amount of data-base input is usually small, no
model-core determination is necessary nor is it an allowable option. If the
user requests average or weighted-average interpolation, the program will
eliminate any data that does not fall within the model area. If trend-surface
interpolation is requested, all the data are used.

3. Six-Second Data: With 6-second data, the model grid may be regular
or irregular. The program flow depends on the value of the second execution
option.

If this option is set to 0, then the 1-minute averages are to be used to
determine the model matrix. The user must have retrieved the 1-minute
statistics for the 6-second data from the data base. If this option is chosen
and the retrieved data contain the 6-second data records, the run will be
aborted. If the user requests average or weighted-average interpolation, the
program will eliminate any data outside the model area. For trend-surface
analysis, all the data are used to compute the model matrix.

If the option is set to 1, then only the 6-second values will be used.
If average or weighted-average interpolation is requested, the program will
eliminate any data outside the model. If trend-surface analysis is chosen,
the program first makes an estimate of the number of 6-second values within
the model. If this estimate exceeds 1600, the run is aborted, with the
suggestion that the run be resubmitted for a different interpolation
technique. If the estimate is less than 1600 values, the program will
continue processing, but will use only the data that fall within the model to
compute the model matrix.

If the option is set to 2, then a mixture of 6-second values and 1-minute
averages will be used. With this option, a model core is determined. This
can be done in two ways. The user can request that the program compute the
model core, or the user can input the row and column extremes of the model
core. If average or weighted-average interpolation is requested, then the
program eliminates data that fall outside the model area. For a mixture of
6-second values and 1-minute averages, trend-surface analysis is not allowed.

72

Special Considerations

This program is divided into two steps. To prevent the second step from
being run if the first step is aborted, certain condition codes are set if a
severe error occurs during execution. The condition code is composed of four
digits. The leftmost digit is reserved for system use. The two steps set
the other three digits to 777 or 888 if an error occurs and the run is to be
aborted.

A condition code of 888 implies that one or more of the input values was
incorrect. This condition code is also set if the user requests something
that the program cannot perform. For example, if the user requests trend-
surface analysis with 6-second data and the program estimates that there are
more than 1600 values within the model, the run will be aborted and a
condition code of 888 is set. With a condition code of 888, the program can
be rerun after the input is corrected.

A condition code of 777 indicates an error beyond the control of the
user. It usually indicates a logic fault or a system problem has occured.
this condition code is raised, the user should contact the computer staff
responsible for the program.

If

Input and Output

The input and output is divided between two steps.

Step I

Input: Read from data set DATAIN

Record (1) - Execution options

Col 1

Col 2

Col 3

Col 4

Col 5

0 Regular grid pattern
I Irregular grid pattern
blank If the parameter is stored as 1-minute or

	10-minute data
0 1-minute averages used
1 6-second values used
2 Mixture of 6-second values and 1-minute

	averages
blank Model-core determination not selected
0 Program will generate model core
1 User inputting model core
0 Model-matrix output format of 8F10.4
1 Model-matrix output format of 20F4.0
1 Average interpolation
2 Weighted-Average interpolation
3 Trend-Surface analysis

73

Record (2) - Description of principal node. The principal node is any
arbitrary node in the model, generally near the center.

Col 1-6 Latitude of principal node (DDMMSS)
Col 7-13 Longitude of principal node (DDDMMSS)
Col 14-16 Row of model for principal node (13)
Col 17-19 Column of model for principal node (13)
Col 20-26 Rotation angle of the model columns from

north in decimal degrees, positive for
counterclockwise rotation (F7.4)

Record (3) - Number of rows and columns in grid

Col 1-3 Number of rows in grid (13)
Col 4-6 Number of columns in grid (13)

The fourth input record depends on the value of the first execution
option. If regular grid option set:

Record (4) - Row and column spacings

Col 1-10 Column spacing-value in feet (F10.0)
Col 11-20 Row spacing-value in feet (F10.0)

If irregular grid option set:

Record (4) - Row and column spacings

Col 1-80 Column spacing-values in feet (8F10.0)
Col 1-80 Row spacing-values in feet (8F10.0)

The fifth record is used if a mixture of 6-second values and 1-minute
averages are used to compute the model matrix. If the program
determines the model core, the user must input the number of 1-minute
values needed in a model block to use the 1-minute averages to compute
a value for a block:

Record (5) - Comparison number of one-minute values

Col 1-2 Number of 1-minute values (12)--usually
set to 5

If the user is inputting the model core description, the record is as
follows:

Record (5) - Description of model core

Col 1-3 Top row of model core (13)
Col 4-6 Bottom row of model core (13)
Col 7-9 Right column of model core (13)
Col 10-12 Left column of model core (13)

74

Data-Base Input: read from data set DBINPT

Step 2

Input: Read from data set DATAIN

Record (1) - Same as record (3) of step 1
Record (2) - Same as record (4) of step 1

If trend-surface analysis is requested a third record is added containing the
order of the polynomial:

Record (3) - Order of polynomial

Col 1 Order of polynomial (II)

Transformed Data-Base Data (output from step 1):

If execution option two is not set to 2, read from data set DBINPT.
If execution option two is set to 2, then 1-minute statistics for
6-second data are read from DBINPT and 6-second data read from DBINPT2.

Output:

Messages - written to SYSPRINT
Model Matrix - written to MODDATA

Sample Procedure

A procedure called DTDTIP is used to execute the Data-Transformation
Program. To execute the Data-Transformation Program, the following JCL should
be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.l ibrary, DISP=SHR
// EXEC DTDTIP, NAME l=input
//DTP. DATAIN DD *

input for the first step
//INTERP. DATAIN DD *

input for the second step

The procedure used to execute the Data-Transformation Program is as follows:

//DTDTIP PROC TIME1=2,TIME2=1,REG1=2200K,REG2=190K,PROG1=DTDTP,
// PROG2=DTINTERP,UNITl=3350,VOLl=myvo2,NAMEl=NULLFILE,
/ / UNIT2=SYSDK , VOL2= , NAME2= , UNIT3=SYSDK , VOL3= , NAME3=
/ /.*.Jt.J^Jl_*.^JUJt.^...t.Jl.Jl.JL,JU^.>t»U^>~^t.Jt.Jt_t..^U^w^

//* DTDTIP: A PROCEDURE TO RUN THE DATA- TRANSFORMATION AND
//* INTERPOLATION PROGRAM

75

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

PROCEDURE DIVIDED INTO TWO STEPS
STEP 1 TRANSFORMS DATA-BASE INPUT TO MODEL COORDINATES
STEP 1 CALLED DTP
STEP 2 USES AN INTERPOLATION TECHNIQUE TO COMPUTE THE MODEL
MATRIX. STEP 2 CALLED INTERP.

USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)

	TIME1 TOTAL RUN TIME FOR DTP STEP (2)
	TIME2 TOTAL RUN TIME FOR INTERP STEP (1)
	REG1 REGION SIZE FOR DTP STEP (2200K)

//* REG2 REGION SIZE FOR INTERP STEP (190K)
//* PROG1 LOAD MODULE FOR DTP STEP (DTDTP)
//* PROG2 LOAD MODULE FOR INTERP STEP (DTINTERP)
//* UNIT1 RETRIEVED DATA-BASE DATA DEVICE (3350)
//* VOL1 RETRIEVED DATA-BASE DATA VOLUME (nre/vol)
//* NAME1 RETRIEVED DATA-BASE DATA DSNAME (NULLFILE)
//* UNIT2 DTP STEP FIRST OUTPUT FILE DEVICE (SYSDK)
//* UNIT2 INTERP STEP FIRST INPUT FILE DEVICE (SYSDK)
//* VOL2 DTP STEP FIRST OUTPUT FILE VOLUME (BLANK)
//* VOL2 INTERP STEP FIRST INPUT FILE VOLUME (BLANK)
//* NAME2 DTP STEP FIRST OUTPUT FILE DSNAME (BLANK)
//* NAME2 INTERP STEP FIRST INPUT FILE DSNAME (BLANK)
//* UNIT3 DTP STEP SECOND OUTPUT FILE DEVICE (SYSDK)
//* UNIT3 INTERP STEP SECOND INPUT FILE DEVICE (SYSDK)
//* VOL3 DTP STEP SECOND OUTPUT FILE VOLUME (BLANK)
//* VOL3 INTERP STEP SECOND INPUT FILE VOLUME (BLANK)
//* NAME3 DTP STEP SECOND OUTPUT FILE DSNAME (BLANK)
//* NAME3 INTERP STEP SECOND INPUT FILE DSNAME (BLANK)
//*
/ /..«-..t^t^i^t_t^ff^y_^^^.j«-.jW

//DTP EXEC PGM=&PROGl,TIME=&TIMEl,REGION=®l,PARM='ISA(1882K) f
//*
//* STEP 1: DATA TRANSFORMATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=JDyIiJb,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//FT06F001 DD SYSOUT=A
//*
//* DEFINE DATA- BASE INPUT DATA SET
//*
//DBINPT DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//*
//* DEFINE OUTPUT DATA SETS FOR TRANSFORMED DATA
//*
/ /DBOTPT DD UNIT=&UNIT2 , VOL=SER=&VOL2 , DSNAME=&NAME2 ,
// DISP=(NEW, PASS, DELETE) ,
// DCB-(RECFM=FB,LRECL=20,BLKSIZE=9440) ,

76

// SPACE=(TRK,(5,5))
//DBOTPT2 DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=&NAME3,
// DISP=(NEW,PASS,DELETE),
// DCB=(RECFM=FB,LRECL=20,BLKSIZE=9440),
// SPACE=(TRK,(5,5))
//INTERP EXEC PGM=&PROG2,TIME=&TIME2,REGION=®2,PARM='ISA(52K) ! ,
// COND=(8,LT,DTP)
//*
//* STEP 2: INTERPOLATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=myI:Lb,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE INPUT DATA SETS FOR TRANSFORMED DATA
//*
//DBINPT DD UNIT=&UNIT2,VOL=SER=&VOL2,DSNAME=*.DTP.DBOTPT,
// DISP=(OLD,PASS)
//DBINPT2 DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=*.DTP.DBOTPT2,
// DISP=(OLD,PASS)
//*
//* DEFINE OUTPUT DATA SET FOR MODEL MATRIX
//*
//MODDATA DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

The Data-Manipulation Program

The Data-Manipulation program mathematically manipulates data. There
are two main uses for the program: (1) It can be used to manipulate one or
two existing parameters for use in other application programs, and (2) it can
be used to create new parameters for input into the data base. The program
provides five standard functions for manipulating data:

LINEAR Function: A*X1 + B*X2 + C
MULTIPLICATION Function: A*X1*X2 + C
DIVISION Function: A*(X1/X2) + C
LOGARITHM Function: A*LOG10 (X1) + C
ANTILOGARITHM Function: A*ANTILOG 10 (X1) + C

where XI and X2 represent data-base format data and A, B, and C are
constants. Additional standard functions can be added to the program as the
need arises.

With these five standard functions, many different algebraic combinations
of two data sets can be performed. An example would be to divide two data
sets and raise the result to a power N:

77

Y = (X1/X2)N .

The result for this algebraic combination is computed in 4 steps:

1. Divide XI by X2;
2. Compute the logarithm of the results of step 1;
3. Multiply the results of step 2 by N; and
4. Compute the antilogarithm of the results of step 3.

An alternative would be to express the above equation as:

LOG 10 (Y) = N*LOG10 (X1) - N*LOG 10 (X2) .

The result for this algebraic combination is also computed in 4 steps:

1. Compute the logarithm of XI and multiply result by N;
2. Compute the logarithm of X2 and multiply result by N;
3. Subtract the results of step 2 from step 1; and
4. Compute the antilogarithm of the result of step 3.

Each of the above 4 steps is a separate execution of the Data-Manipulation
Program.

With the Data-Manipulation Program, the user can bypass the standard
functions and input an arithmetic expression that is to be used to manipulate
the data. This expression must be a valid PL/1 arithmetic expression. This
expression is limited to the manipulation of 1 or 2 data-base format data
sets. The variables XI and X2 must be used to represent the data. The
expression can contain any number of constants. Of these constants, three of
them may be represented by the variables A, B, and C. The values of these
three constants are input separate from the arithmetic expression.

The arithmetic expression can incorporate any of the standard arithmetic
operations which include addition, subtraction, multiplication, division, and
exponentiation. In addition, the expression can contain references to many
of the standard mathematical functions such as the trigonometric and
hyperbolic functions.

By allowing the use of standard mathematical functions within the
optional arithmetic expression, the possibility exists that computational
errors, such as attempting to compute the square root of a negative number or
division by zero, may occur. The program is designed to detect these types of
errors. The program specifically detects the following error types:

1. Division by zero;
2. Underflow';
3. Overflow; and
4. Computational errors.

An underflow error results from computing a number that is too small to be
stored by the computer and overflow results from computing a number that is
too large to be stored in the computer. The Data-Manipulation Program allows
the user to accumulate 10 errors of each type. After 10 errors of any type
are detected, the program execution is aborted.

78

Input

The mathematical function to be performed and all other parameters are
input on one or, optionally, two input records. The first input record is
always required and it contains a maximum of six fields. One field describes
the function to be performed. This is the FNCTION field and can contain one
of six values:

LINEAR (A*X1 + B*X2 + C)
MULTIPLY (A*X1*X2 + C)
DIVIDE (A*(X1/X2) + C)
LOG (A*LOG 10 (X1) + C)
ANTILOG (A*ANTILOG 10 (X1) + C)
USERDEF

The value, USERDEF, will be explained later. If the FNCTION field does
not contain one of the above values, the run is aborted. The next three
fields contain the values of the constants A, B, and C. There are no default
values for these constants. For each function, the required constants must be
assigned values. For the functions LOG, ANTILOG, MULTIPLY and DIVIDE, the
constants A and C must be defined. For the LINEAR function, A, B, and C must
be assigned values. Failure to define one or more of the required constants
will cause the run to be aborted. The next field is called PARM. This is a
field of up to 30 alphanumeric characters that define the parameter name for
the output of the program. The sixth field is called NUMBER and it indicates
the number of data-base format data sets to be manipulated. It can take the
values of 1 or 2 only.

These six fields are input in a free-field format. They can be placed
on one or more records. The fields are separated by one or more blanks or by
commas. The last field must be followed by a semicolon. There is no specific
order in which the fields must be defined. An example is as follows:

FNCTION='LINEAR' A=l B=l C=0 PARM='PUMPAGE - 1978' NUMBER=2;

If the value USERDEF is specified for the FNCTION field then, as well as
defining the appropriate fields from among A, B, C, PARM, and NUMBER, an
additional record needs to be input that specifies the arithmetic expression
that is to be used to manipulate the data-base data. This expression may
contain up to 61 characters (including blanks) and it must be a valid PL/1
arithmetic expression. The data-base data must be represented by the
variables XI and X2 where XI is a value from data set 1 and X2 is a value from
set 2. The expression can contain any number of constants. Of these
constants, only three of them may be represented by variables. The variable
names for these three constants must be A, B, and C. The following symbols
must be used for arithmetic operations:

Addition: +
Subtraction:
Multiplication: *
Division: /
Exponentiation: **

79

The arithmetic expression may contain references to mathematical
functions. The most common functions are:

ACOS
AS IN
ATAN
ATAND
ATANH
COS
COSD
COSH
ERF
ERFC
EXP
LOG
LOG2
LOG 10
SIN
SIND
SINK
SQRT
TAN
TAND
TANK

Inverse (arc) cosine in radians
Inverse sine in radians
Inverse tangent in radians
Inverse tangent in degrees
Inverse hyperbolic tangent
Cosine of angle expressed in radians
Cosine of angle expressed in degrees
Hyperbolic cosine
Error function
Complement of error function
The base, e, raised to a power
Natural logarithm
Binary logarithm
Common logarithm
Sine of angle expressed in radians
Sine of angle expressed in degrees
Hyperbolic sine
Square root
Tangent of angle expressed in radians
Tangent of angle expressed in degrees
Hyperbolic tangent

The arithmetic expression can be used to manipulate 1 or 2 data sets. The
actual expression is input in the same free-field format as the six fields
previously described. It can be placed on the same record following the
semicolon that is found at the end of the description of the first six fields
or it can be placed on a separate record. The expression is input as follows

EXPRESSION'ARITHMETIC EXPRESSION';

Examples are as follows:

EXPRESSION' A«SQRT(XI) + C' ;
EXPRESSION'S.0*SQRT(X1) + 2.6';
EXPRESSION'A*COS (XI) + B*SIN(X2) + C'

The other major input to the Data-Manipulation Program is the data
file(s) upon which the mathematical manipulations are to be performed. These
data must be in the standard data-base format, which means that the file must
begin with the 001#, 002#, and 003# records. These records are then followed
by the proper combination of 100#, 200#, 300#, 401#-4lO# records, depending on
the density of the data. These data may be derived in three ways. The data
can be retrieved from the data base and, by using this method, the data are
automatically in the proper format. The input data could also be the output
from a previous run of the Data-Manipulation Program. In this case, the data
are also in the proper format. Finally, the user can create the data set. If
this method is used, the data should be edited prior to input into the
Data-Manipulation Program, using the Edit Program.

80

For the functions LOG and ANTILOG, only one data set is input. The
program extracts the parameter name, data density, scale factor, and the
missing-value indicator (MVI) from the 001#, 002#, and 003# records. By using
the data-density value, the program determines which of the records contains
the values that are to be used in computing the log or antilog.

For the LINEAR, MULTIPLY, and DIVIDE functions, two distinct data sets
are input. These data sets need not exactly match; one of the data sets can
contain more or less data than the other. The program only performs the data
manipulations for the data that are common to both data sets.

If two data sets are being processed, the user must specify the
intersection of the two data sets using geographic coordinates. The
geographic coordinates are given as whole degrees and specified in the form
DDMMSS for latitude and DDDMMSS for longitude. The values are placed on one
input record in the order: minimum latitude (columns 1-6), maximum latitude
(columns 7-12), minimum longitude (columns 13-19), and maximum longitude
(columns 20-26). These values are read from a data set called LLLIMIT. The
data manipulations will only be performed in the area covered by the
intersection of the data sets.

Output

The output is in two forms. The first is the standard print file that
contains information such as the selected function, the new scale factor and
the new MVI for the output data. Error messages can also be found with this
output. If the user is supplying the arithmetic expression and it is
syntactically an incorrect PL/1 expression, then the PL/1 optimizing compiler
will print an error message and the program will not process the data. The
compiler messages consist of a number of the form IELXXXXA and a message.
These error messages can be found in the IBM publication called 'OS PL/1
Optimizing Compiler: Messages'.

As stated previously, errors may occur while evaluating the selected
function. When the program detects an error, a warning message is printed.
In the cases of division by zero, underflow, and overflow, the message will
specifically state the error that was detected. Due to the numerous possible
computational errors, the message provides a code, called an 'oncode', that
indicates the precise computational error. A complete explanation of the
'encodes' may be found in the IBM publication called 'OS and DOS PL/1 Language
Reference Manual*.

After 10 errors of any type are detected, a message is printed and the
run is aborted. In addition to the error message provided by this program,
the operating system supplies an error message that can be found just prior to
the program error message in the printout. The system error message may be
helpful in understanding the error that has occurred. Explanations of these
system error messages may be found in the IBM publication titled 'OS PL/1
Optimizing Compiler: Messages'.

81

The second output is a data set, that is usually written to disk, and
contains the results of applying the requested function to the input data.
The format of the output is the same as for the input. For the LOG and
ANTILOG functions, if the parameter value is equal to the MVI, the log or
antilog is not applied to that value. The value is output as the new MVI.
For the MULTIPLY, DIVIDE, or LINEAR function, when a match of data is found,
both of the values must not be equal to the MVI before the operation is
performed. If one or both of the values are equal to the MVI, then no output
record is generated for that block. This output can be used in three
different ways. First, it can be the input to another Data-Manipulation
Program run. Second, it can be a new parameter that is to be loaded into the
data base. Third, the output can be the input to another application program.

Sample Procedure

The Data-Manipulation Program is run by executing a procedure called
DTMATH. If the LOG or ANTILOG function is selected, only one data-base format
input file is used and this file is defined by the parameter NAME1. If the
LINEAR, MULTIPLY or DIVIDE function is selected, two data-base format input
files are used and the file names are defined using the parameters NAME1 and
NAME2. The output file name is defined using the parameter NAME3. To execute
the Data-Manipulation Program, the following JCL should be used:

//. . . JOB . . .
//PROCLIB DD DSN=procedure.Iijbrary,DISP=SHR
// EXEC DTMATH,NAMEl=inputl,NAME2=input2,NAME3=output
//GENFNCT.CMDIN DD *

one or more records
//GO.LLLIMIT DD *

latitude-longitude intersection
//

The procedure used to execute the Data-Manipulation Program is as follows:

//DTMATH PROC TIM1=1,TIM2=1,TIM3=1,REG1=150K,REG2=350K,REG3=1100K,
// PROG1=GENFNCT,PROG2=IELOAA,PROG3=LOADER,UNIT1=3350,
// VOLl=myvoI,NAME1=NULLFILE,UNIT2=3350,VOL2=myvoI,
// NAME2=NULLFILE,UNIT3=3350,VOL3=myvoI,NAME3=NULLFILE,
// GOPARM='ISA(346K)'
/ /Jl^JUJUJLJLJLMJLJUJLJUJUJlMft.JLJUJUJ~JU^
/ / /V /\ /\ /V /\ /\ /\ /\ /\ /\ /V /\ /\ /V /\ /\ /V /\ /\ *\ /\ /\ *\ *\ /\ /\ /\ /\ /\ /\ /\ /\ /V /V f\ /% /V /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 4\ /\ /\ /\ /\ /* t\ *\ /\ /\ /V /\ /\ t\ t\ /\ /\ /\ /V /\

//* DTMATH: A PROCEDURE TO RUN THE DATA-MANIPULATION PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM1 TOTAL RUN TIME - STEP 1 (1)
//* TIM2 TOTAL RUN TIME - STEP 2 (1)
//* TIM3 TOTAL RUN TIME - STEP 3 (1)
//* REG1 REGION SIZE - STEP 1 (150K)
//* REG2 REGION SIZE - STEP 2 (350K)
//* REG3 REGION SIZE - STEP 3 (HOOK)

82

//* CHANGE TO 3500K WHEN PROCESSING 2 SETS OF 6" DATA
//* PROG1 LOAD MODULE NAME - STEP 1 (GENFNCT)
//* PROG2 LOAD MODULE NAME - STEP 2 (IELOAA)

PROG3 LOAD MODULE NAME - STEP 3 (LOADER)
UNIT1 FIRST DATA-BASE INPUT FILE DEVICE (3350)
VOL1 FIRST DATA-BASE INPUT FILE VOLUME (myvol)
NAME1 FIRST DATA-BASE INPUT FILE DSNAME (NULLFILE)

//* UNIT2 SECOND DATA-BASE INPUT FILE DEVICE (3350)
//* VOL2 SECOND DATA-BASE INPUT FILE VOLUME (myvol)

NAME2 SECOND DATA-BASE INPUT FILE DSNAME (NULLFILE)
UNIT3 OUTPUT FILE DEVICE (3350)

//* VOL3 OUTPUT FILE VOLUME (myvol)
//* NAME3 OUTPUT FILE DSNAME (NULLFILE)

// :,,,,,,..I,.,,....,,..,,.,..,.,,,,...,..,,..,.,..,...,..,..,...,,,.,
I I 4\ n /> t\ f\ /» t\ n n n « / . /» « /v <\ <\ n <\ / > /* n / > t\ /\ /» /» « <\ n n t\ n n t\ n t\ /» /> n /» <\ /v /x n n /» n /\ /» >\ /x /» /» e\ <\ /» / . t\ /» /» /» /» n '* t\ <\ <\

II*

//GENFNCT EXEC PGM=&PROG1,TIME=&TIM1,REGION=®1,PARM='ISA(4K)'
//*
//* STEP 1: GENERATE THE SOURCE CODE FOR THE FUNCTION SUBPROGRAM
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=myIi/>,DISP=SHR
//*
//* DEFINE STANDARD DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE FILE CONTAINING PARTIAL SOURCE CODE FOR FUNCTION
//*
//DATAFCT DD DSN=source1ib(COMPUTE),DISP=SHR
//*
//* DEFINE TEMPORARY FILE FOR COMPLETE SOURCE CODE FOR FUNCTION
//*
//DATAOUT DD DSN=&&TEMP,UNIT=SYSDA,VOL=,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600),SPACE=(TRK,(1,1),RLSE)
//*
//* DEFINE TEMPORARY FILE FOR INPUT TO STEP THREE
//*
//CMDOUT DD DSN=&&INPUT,UNIT=SYSDA,VOL=,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600),SPACE=(TRK,(1,1),RLSE)
//*
//*
//COMPILE EXEC PGM=&PROG2,TIME=&TIM2,REGION=®2,
// PARM='NOOPTIONS,NOSOURCE,NOSTORAGE',COND=(9,LT,GENFNCT)
//*
//* STEP 2: COMPILE THE FUNCTION SUBPROGRAM
//*
//STEPLIB DD DSN=SYS1.PLIX.LINKLIB,DISP=SHR
//SYSPRINT DD SYSOUT^A
//SYSLIN DD DSN=&&LOADSET,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(3120,(35,25),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

83

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(30,15)),
// DCB=(BLKSIZE=1024,BUFNO=1)
//SYSIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
//*
//*
//GO EXEC PGM=&PROG3,TIME=&TIM3,REGION=®3,PARM='/&GOPARM',
// COND=((9,LT,GENFNCT),(9,LT,COMPILE))
//*
//* STEP 3: LOAD AND EXECUTE OF DATA-MANIPULATION PROGRAM
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
// DD DSN=2nyJiJb,DISP=SHR
//SYSLIN DD DSN=myJiJb(DTMATH) ,DISP=SHR
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSLOUT DD DUMMY
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE DATA-BASE INPUT DATA SETS
//*
//DATAX1 DD UNIT=&UNIT1,VOL=SER=&VOL1,DSNAME=&NAME1,DISPOSER
//DATAX2 DD UNIT=&UNIT2,VOL=SER=&VOL2,DSNAME=&NAME2,DISP=SHR
//*
//* DEFINE OUTPUT DATA SET
//*
//DATAOUT DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=&NAME3,
// DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),
// SPACE=(TRK,(5,5))
//*
//* DEFINE TEMPORARY DATA SETS
//*
//TEMPIO DD DSN=&&TEMP,UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=29,BLKSIZE=6206),SPACE=(TRK,(5,5))
//TEMPI02 DD DSN=&&TEMP2,UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=52,BLKSIZE=6188),SPACE=(TRK,(5.,5))
//CMDIN DD DSN=&&INPUT,DISP=(OLD,DELETE)

The Graphics Program

The Graphics Program produces contour maps and three-dimensional
perspective drawings (3-D plots) of data. The program will process 10-minute,
1-minute, and 6-second data. The data are usually obtained using the
Retrieval Program; the details of the retrieval can be found in the
documentation for the Retrieval Program.

The contour maps are generated using Calcomp's General Purpose Contouring
Program (GPCP) Version I. The program can plot data only, contours only, or
both. The input includes map and plotter specifications and the interval
between bold contours. The user specifies a title for the plot. Only one

84

map can be generated per program execution. The map consists of data points
and (or) contours. The bold contours are labelled and the plot is surrounded
by a border. The title is located outside the plot area along the positive Y
axis.

The 3-D plots are generated using Calcomp's THREE-D Program Version 2.
The user selects the size of the plot, the smoothness of the plot, the
relative vertical exaggeration, and the position of the observer. The user
can produce from one to nine plots of the same data from different locations.
The position of the observer is specified by an azimuth angle, an elevation
angle, and zoom factor. The zoom factor controls the distance between the
observer and the surface. The plot is oriented so that the title is along the
top.

The Graphics Program automatically saves the gridded data that are needed
to produce the contour maps and the 3-D plots. Hence, in subsequent
executions of the program, the user can use the saved data to produce
additional plots without going through the process of regridding the data
required for producing the plots. Even with this feature, the program can be
very costly to use because of the extensive processing. The computer
processing time increases as the number of values increase and doubling the
number of values more than doubles the processing time.

Input

Input: Read from data set DATAIN. The first set of records is always
required.

Record (1) - Execution Options

Col 1 blank No map projection selected
(using previously gridded data)

1 Lambert map projection selected
2 Albers map projection selected
3 Polyconic map projection selected

Col 2 1 Produce a contour map or a data-
point plot

2 Produce 3-D plot(s)
3 Produce both a contour map and

3-D plot(s)
Col 3 1 Generate data and plot(s)

2 Generate plot(s) using previously
generated data

The second record depends on the value placed in column 3 of record 1. If
generating data and plot(s):

Record (2) - Definition of plotting area in geographic coordinates

Col 1-6 Minimum latitude of plotting area (DDMMSS)
Col 7-12 Maximum latitude of plotting area (DDMMSS)
Col 13-19 Minimum longitude of plotting area (DDDMMSS)

85

Col 20-26 Maximum longitude of plotting area (DDDMMSS)
Col 27-32 Size of buffer area around plot (DDMMSS). Useful

for proper overlapping of contour maps.

If generating plots using previously generated data:

Record (2) - Definition of plotting area in cartesian coordinates

Col 1-10 Minimum X coordinate of plotting area (F10.4)
Col 11-20 Maximum X coordinate of plotting area (F10.4)
Col 21-30 Minimum Y coordinate of plotting area (F10.4)
Col 31-40 Maximum Y coordinate of plotting area (F10.4)
Col 41-52 Minimum Z value (E12.6)
Col 53-64 Maximum Z value (E12.6)

Note: Values for the above 6 quantities can be found as part of the print
out of a previous execution of the Graphics Program.

If generating data and plot(s), a third record is used:

Record (3) - Scale of map

Col 1-9 Denominator of map scale (e.g. 250000 for
1:250,000 map) (19)

The second set of records are required only for contour plots.

Record (1) - Plot options and title

Col 1 1 Plot data points only
2 Plot contours only
3 Plot data points and contours

Col 2 Blank
Col 3-77 Title of plot (left-justified)

Record (2) - Plot specifications

Col 1-5 Rotation angle (decimal degrees). Measured
counterclockwise from east. One decimal digit
of precision allowed (F5.0)

Col 6-7 Blank
Col 8-10 Width of plot, in inches (13)
Col 11-13 Blank
Col 14-25 Interval between bold contours (E12.6)

The third set of records is required only for 3-D plots.

Record (1) - 3-D program execution options

Col 1 1 Coarse gridding (no smoothing)
2 Medium gridding (some smoothing)
3 Fine gridding (most smoothing)

86

Col 2 1 Normal vertical exaggeration
2 Less than normal vertical exaggeration
3 Minimum vertical exaggeration
4 More than normal vertical exaggeration
5 Maximum vertical exaggeration

Col 3 1-9 Number of 3-D plots

Record (2) - Plot specifications (one for each 3-D plot)

Col 1-5 Azimuth angle of observer (decimal degrees),
measured counterclockwise from east. A value
of 0 indicates viewing from due east, a value of
90 indicates viewing from due north, and so forth.
One decimal digit of precision allowed (F5.0)

Col 6-10 Elevation angle of observer (decimal degrees),
measured counterclockwise from directly above the
plot. A value of 0 indicates viewing from directly
above the plot and a value of 90 indicates viewing
from the same level as the plot. One decimal
digit of precision allowed (F5.0)

Col 11-13 Blank
Col 14-15 Zoom factor (12). Varies from 0 to 10 with 0

placing the observer at the plot and 10 placing
the observer very far from the plot.

Col 16 Blank
Col 17-20 Length of side of plotting area, in inches. One

decimal digit of precision allowed (F4.0)
Col 21-70 Title of plot (left-justified)

Output

The first output is a standard print file containing basic information
about the execution of the Graphics Program. This file contains: (1)
Selected execution options; (2) basic information on data-base parameter being
plotted; (3) if generating data, the calculated minimum and maximum X, Y, and
Z values; (4) if producing a contour map, the contour plot specifications, the
contour interval, and the value of the first contour plotted; and (5) if
producing 3-D plots, the specifications for each requested plot. If any
errors occur, the error message can be found in this file.

The second output is a punch file containing the Calcomp plotter
commands. Additional output is generated by Calcomp's GPCP and THREE-D
programs. GPCP prints one line for each value showing the value and its
corresponding plotter coordinates. The THREE-D program prints the Z matrix.
The output generated by these two programs can be extensive. There is no
practical way to eliminate this information.

87

Sample Procedure

A procedure called DIGRAPH is used to execute the Graphics Program. To
run the Graphics Program, several variations of JCL should be used. If
generating data and plotting contour maps and (or) 3-D plots, the following
JCL should be used:

// ... JOB ...
//PROCLIB DD DSN=procedure.2ibrari/,DISP=SHR
// EXEC DIGRAPH, NAME l=databasedata ,
// NAME2=data ,NAME3=savef ilel ,NAME4=savef ile2
II GRAPH. DATAIN DD *

input records

If generating contour maps using previously generated data:

// ... JOB ...
//PROCLIB DD DSN=procedure.2ibrary,DISP=SHR
// EXEC DIGRAPH, NAME2=data,DSP2=OLD,
// NAME3=savefi2el,DSP3=OLD
//GRAPH. DATAIN DD *

input records

If generating 3-D plots using previously generated data:

// ... JOB ...
//PROCLIB DD DSN=procedure.2ibrari/,DISP=SHR
// EXEC DIGRAPH, NAME4=savefi 2 e2,DSP4=OLD
//GRAPH. DATAIN DD *

input records

If generating both contour map and 3-D plots using previously generated
data:

// ... JOB ...
//PROCLIB DD DSN=procedure.2ibrari/,DISP=SHR
// EXEC DIGRAPH, NAME2=data,DSP2=OLD,
// NAME3=savef i2el ,DSP3=OLD ,NAME4=savef i2e2 ,
// DSP4=OLD
//GRAPH. DATAIN DD *

input records

In the above examples, datafcasedata is the data-set name of the file
containing the retrieved data, data is the data-set name of the file
containing the transformed data-base data, savefilel is the data-set name of
the file where the data needed to produce contour maps are saved, and
savefi2e2 is the data-set name of the file where the data needed to produce
3-D plots are saved.

88

The procedure used to execute the Graphics Program is as follows:

//DTGRAPH

//
//
//

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

PROC PROG1=DTGRAPH , PROG2=GPCPGRID , PROG3=MDFILE ,
PROG4=THREE906 ,TIME1=1 ,TIME2=1 ,TIME3=1 ,TIME4=1 ,
REG1=2200K,REG2=450K,REG3=110K,REG4=250K,
NAME1=NULLFILE ,UNIT1=3350 ,VOLl=myvoI ,
NAME2=NULLFILE ,UNIT2=3350 , VOL2=myvoI ,
DSP2=' (NEW, KEEP, DELETE) ' ,NAME3=NULLFILE,UNIT3=3350,
VOL3=myvoI,DSP3=' (NEW, KEEP, DELETE)' ,NAME4=NULLFILE,
UNIT4=3350,VOL4=myvol,DSP4= f (NEW, KEEP, DELETE)'

DTGRAPH: A PROCEDURE TO RUN THE GRAPHICS PROGRAM
PROCEDURE DIVIDED INTO FOUR STEPS
STEP 1 (GRAPH): TRANSFORMS DATA-BASE INPUT TO (X,Y,Z)

AND GENERATES CONTROL CARDS FOR CALCOMP'S GPCP AND
THREE-D PROGRAMS.

STEP 2 (GPCP) EXECUTES CALCOMP'S GPCP PROGRAM
STEP 3 (MDFILE) MODIFIES FILE CONTAINING GRIDDED DATA,

THAT WAS PRODUCED BY GPCP USING THE 'PNCH' COMMAND,
FOR INPUT TO THE THREE-D PROGRAM.

STEP 4 (THREED) EXECUTES CALCOMP'S THREE-D PROGRAM

USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)

PROG1 LOAD MODULE NAME FOR STEP 1 (DTGRAPH)
PROG2 LOAD MODULE NAME FOR STEP 2 (GPCPGRID)

DEFAULT MODULE PRODUCES CONTOUR PLOTS FOR CALCOMP
PLOTTERS WITH 906 TYPE CONTROLLERS

PROG3 LOAD MODULE NAME FOR STEP 3 (MDFILE)
PROG4 LOAD MODULE NAME FOR STEP 4 (THREE906)

DEFAULT MODULE PRODUCES 3-D PLOTS FOR CALCOMP
PLOTTERS WITH 906 TYPE CONTROLLERS

TIME1 TOTAL RUN TIME FOR STEP 1 (1)
TIME2 TOTAL RUN TIME FOR STEP 2 (1)
TIME3 TOTAL RUN TIME FOR STEP 3 (1)
TIME4 TOTAL RUN TIME FOR STEP 4 (1)
REG1 REGION SIZE FOR STEP 1 (2200K)
REG2 REGION SIZE FOR STEP 2 (450K)
REG3 REGION SIZE FOR STEP 3 (110K)
REG4 REGION SIZE FOR STEP 4 (250K)
NAME1 DATA-BASE DATA INPUT FILE DSNAME (NULLFILE)
UNIT1 DATA-BASE DATA INPUT FILE UNIT (3350)
VOL1 DATA-BASE DATA INPUT FILE VOLUME (myvol)
NAME2 CONTROL-POINT DATA FILE DSNAME (NULLFILE)
UNIT2 CONTROL-POINT DATA FILE UNIT (3350)
VOL2 CONTROL-POINT DATA FILE VOLUME (myvol)
DSP2 CONTROL-POINT DATA FILE DISPOSITION

((NEW,KEEP,DELETE))
NAME3 GPCP SAVE FILE DSNAME (NULLFILE)
UNIT3 GPCP SAVE FILE UNIT (3350)
VOL3 GPCP SAVE FILE VOLUME (myvol)
DSP3 GPCP SAVE FILE DISPOSITION ((NEW,KEEP,DELETE))

89

//* NAME4 GPCP PNCH FILE DSNAME (NULLFILE)
//* UNIT4 GPCP PNCH FILE UNIT (3350)
//* VOL4 GPCP PNCH FILE VOLUME (myvol)
//* DSP4 GPCP PNCH FILE DISPOSITION ((NEW , KEEP , DELETE))
//*
/ /J~JUJLa^JtMJl.JLJLJLJLJLJL^t^«Jt.JUJ^^
/ / 4\ /\ /\ j\ /\ /\ /\ /\ 4\ 4\ /\ /\ /\ /\ /\ /\ /V /\ /\ f\ f\ f\ f\ /\ 4\ /\ >V /\ /\ /\ /\ /V /\ /\ /\ /\ /\ /\ #\ /\ /\ /V /\ /\ /\ /V /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ S\ /\ /\ /\ /\ /\ /V /V /\ /\

II*
//GRAPH EXEC PGM=&PROG1 ,TIME=&TIME1 ,REGION=®1 ,PARM=' ISA(1864K) '
//*
//* STEP 1: DATA TRANSFORMATION AND CONTROL CARD GENERATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=nre/Ii/?,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS

//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//FT06F001 DD SYSOUT=A
//*
//* DEFINE DATA-BASE DATA INPUT FILE
//*
//DBINPT DD UNIT=&UNIT1 ,VOL=SER=&VOL1 ,DISP=SHR,DSNAME=&NAME1
//*
//^ DEFINE DATA SET FOR TRANSFORMED DATA (CONTROL -POINT FILE)
II*
//DBOTPT DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=&DSP2,DSN=&NAME2,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=12960),SPACE=(TRK,(3,25),RLSE)
//*
//* DEFINE TEMPORARY FILES FOR CONTROL CARDS
//*
//CNTCRD1 DD UNIT=SYSDK,VOL=,DISP=(NEW,PASS) ,DSN=&&CARD1 ,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600) ,SPACE=(TRK, (1,1) ,RLSE)
//CNTCRD2 DD UNIT=SYSDK, VOL=,DISP= (NEW, PASS) ,DSN=&&CARD2,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600) ,SPACE=(TRK, (1 ,1) ,RLSE)
//*
II*
//GPCP EXEC PGM=&PROG2 ,TIME=&TIME2 ,REGION=®2 ,
// COND=((333,EQ, GRAPH), (776, LT, GRAPH))
//*
//* STEP 2: CALCOMP'S GPCP PROGRAM - VERSION 1
//*
//STEPLIB DD DSN=SYS1.CALCOMP,DISP=SHR
// DD DSN=SYS1.MVT.LINKLIB,DISP=SHR
//* DEFINE TEMPORARY WORK FILE
//FT01F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP1,DCB=BLKSIZE=9444,
// SPACE=(TRK, (5,2) ,RLSE)
//*
//* DEFINE CONTROL-POINT FILE - TRANSFORMED DATA FILE FROM STEP 1
//*
//FT03F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(OLD,KEEP) ,DSN=&NAME2
II*

90

//* DEFINE SAVE FILE
//*
//FT04F001 DD UNIT=&UNIT3,VOL=SER=&VOL3,DISP=&DSP3,DSN=&NAME3,
// DCB=(RECFM=VBS,BLKSIZE=6447),SPACE=(TRK,(5,5),RLSE)
//* DEFINE CONTROL CARD FILE - SAME AS FILE CNTCRD1 FORM STEP 1
//FT05F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&CARD1
//* DEFINE STANDARD PRINT FILE
//FT06F001 DD SYSOUT=A
//*
//* DEFINE PNCH FILE
//*
//FT07F001 DD UNIT=&UNIT4,VOL=SER=&VOL4,DISP=&DSP4,DSNAME=&NAME4,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),SPACE=(TRK,(5,5),RLSE)
//*
//* DEFINE PLOTTER COMMAND FILE
//*
//FT09F001 DD SYSOUT=B
//*
//*
//MDFILE EXEC PGM=&PROG3,TIME=&TIME3,REGION=®3,PARM='ISA(4K)',
// COND=((111,EQ,GRAPH),(776,LT,GRAPH))
//*
//* STEP 3: MODIFICATION OF PNCH FILE, PRODUCED BY STEP 2, FOR USE
//* BY STEP 4
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=my2iJb,DISP=SHR
//*
//* DEFINE STANDARD DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE INPUT FILE - PNCH FILE FROM STEP 2
//*
//DATAIN DD UNIT=&UNIT4,VOL=SER=&VOL4,DISP=(OLD,KEEP),DSNAME=&NAME4
//* DEFINE A TEMPORARY DATA SET
//TEMP DD UNIT=SYSDK,VOL=,DISP=(NEW,PASS),DSN=&&TEMP,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=9440),SPACE=(TRK,(5,2),RLSE)
//*
//THREED EXEC PGM=&PROG4,TIME=&TIME4,REGION=®4,
// COND=((111,EQ,GRAPH),(7 7 6,LT,GRAPH))
//* *
//* STEP 4: CALCOMP'S THREE-D PROGRAM
//*
//STEPLIB DD DSN=SYS1.CALCOMP,DISP=SHR
// DD DSN=SYS1.MVT.LINKLIB,DISP=SHR
//* DEFINE TEMPORARY WORK FILES
//FT01F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP1,
// DCB=BLKSIZE=9444,SPACE=(TRK,(5,2),RLSE)
//FT04F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP2,

91

// DCB=BLKSIZE=9444,SPACE=(TRK,(5,2),RLSE)
//* DEFINE.GRIDDED DATA INPUT FILE - TEMP FILE FROM STEP 3
//*
//FT03F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&TEMP
//*
//*
//* DEFINE CONTROL CARD FILE - FILE CNTCRD2 FROM STEP 1
//FT05F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&CARD2
//* DEFINE STANDARD OUTPUT FILES
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT^B
//* DEFINE PLOTTER COMMAND FILE
//FT09F001 DD SYSOUT=B

92

SUPPLEMENT III: PROGRAM-MAINTENANCE MANUAL

The purpose of this section is to highlight the changes needed to
implement the DMS for another study. It is not a complete reference for
debugging any possible future problems with the DMS. The information provided
is based upon several assumptions concerning the environment in which the DMS
is to be implemented. The assumptions are:

1. Software is implemented by using an IBM or IBM-compatible mainframe;
2. Software is implemented by using the System 2000 DBMS and the same

date-base definition; and
3. The computer system has the Fortran IV and PL/1 programming

languages.

These criteria narrow the type of implementation for which information is
provided. It would not be practical to give information pertaining to the
implementation of this system using a different DBMS. There are several
available packages that could provide the resources of System 2000. However,
regardless of DBMS and programming languages chosen, the logic behind the
present software would still be useful. If the system is used in a different
environment, it is advisable to retain the same input and output formats.
This would ease the implementation of the data-generation and application
programs.

A section is provided for each program. Each section begins with an
introduction and then lists changes needed for each subroutine in the program
requiring changes. In most instances, needed changes are to the initial
values of variables and to array dimensions. For example, some initialized
variables reflect the location of the High Plains aquifer. These need to be
changed to reflect the location of the area to be studied. Changes in the
program logic are not likely to be necessary. Major coding changes are
required only for the Edit and Retrieval Programs. These changes will be
discussed in the section for each of these programs.

Edit Program

The Edit Program provides a means of checking correctness of the input
to other programs in the DMS. Because of this extensive purpose, the Edit
Program has become very large. This program will require more implementation
changes than any other program in the system.

Because the program is written in IBM Fortran, which does not provide a
means of encoding and decoding data, an unsupported and undocumented
subroutine, called CORE, is used to provide this function. It is thus
advisable to rewrite the code that performs the decoding and encoding. This
can be easily done if the available version of Fortran has an encode/decode
feature. If not, the Edit Program would have to be rewritten in a language
that provides this feature the use of CORE is very prevalent within this
program.

93

There are three versions of the Edit Program. Version 1, called DTEDIT1,
is used to check the input to the Load Program. Version 2, called DTEDIT2,
is used to check the input to the Retrieval Program. Version 3, called
DTEDIT3, is used to check the input to the Instant-Update Program. All three
versions of the Edit Program are identically structured. Each program has a
block-data subroutine, a program-initialization subroutine, and one subroutine
to guide the checking of the records. Each program has only one subroutine
that accesses the data base. The following subroutines will require changes.
After each subroutine name, a name is given in parentheses that identifies
the version of the Edit Program to which the subroutine belongs.

BOAT (DTEDIT1)

This is a block-data subroutine used to set up common areas and
initialize variables. The LEVEL1 array is used for duplication checking. It
covers the entire United States by 1-degree by 1-degree blocks. These
dimensions could be changed to cover a different sized area such as part of
the United States. If the area covered by this array is changed, initial
values of the variables LTBASE and LNBASE would need to be changed. These
variables are the base values for latitude and longitude and they are used to
compute positions within the LEVEL1 array.

INIT (All 3 versions)

Two system subroutines are used to determine the date and time of the
run. These subroutines may be different on another system. No other changes
are required.

CHK100 (DTEDIT1)

The variables LATMIN, LATMAX, LONMIN, and LONMAX are used to describe
the extent of the study area in terms of latitude and longitude. These
variables are initialized to appropriate values for the High Plains aquifer.
These values would have to be changed for another study.

DUPL (DTEDIT1)

This subroutine uses the LEVEL1 array which is used for duplication
checking of data prior to loading into the data base. The LEVEL1 array is
initially declared in the BDAT block-data subroutine and the changes to this
array are discussed in the section on that subroutine.

DTSTK1 (DTEDIT1)

This is the only subroutine within the DTEDIT1 program that accesses the
data base. Hence, it is the only subroutine that contains System 2000 (the
DBMS) PLEX commands. The data-base name that is used in some of the PLEX
statements should be changed. This subroutine uses the LEVEL1 array that is
initially declared in the BDAT block-data subroutine and the changes to this
array are discussed in the section on that subroutine.

94

LTCHK2 (DTEDIT2)

This subroutine checks to see if the latitude on a 006# record falls
within the study area. The latitude extremes are now set to values
appropriate to the High Plains aquifer. These values need to be changed to
reflect the area under study.

LNCHK2 (DTEDIT2)

This subroutine checks to see if the longitude on a 006# record falls
within the study area. The longitude extremes are now set to values
appropriate to the High Plains aquifer. These values need to be changed to
reflect the area under study.

DTSTK2 (DTEDIT2)

This is the only subroutine within the DTEDIT2 program that accesses the
data base. Hence, it is the only subroutine that contains System 2000 (the
DBMS) PLEX commands. The data-base name that is used in some of the PLEX
statements should be changed.

BOAT (DTEDIT3)

This is the block-data subroutine used to set up common areas and
initialize variables. The VALNAM array is used to store the names of °
authorized users of the Instant-Update program; this array will presently
store 20 names. This may need to be changed, depending on the number of
authorized users.

NAMECK (DTEDIT3)

This subroutine uses the VALNAM array to store the names of authorized
users of the Instant-Update Program; the dimension may be changed to
accommodate more names.

LTCHK (DTEDIT3)

This subroutine determines if the latitude on a 600# record falls within
the study area. The constants defining the latitude extremes are now set to
values that are appropriate for the High Plains aquifer. These values need
to be changed to reflect the area under study.

LNCHK (DTEDIT3)

This subroutine determines if the longitude on a 600# record falls within
the study area. The constants defining the longitude extremes are now set to
values that are appropriate for the High Plains aquifer. These values need
to be changed to reflect the area under study.

95

DTSTK3 (DTEDIT3)

This is the only subroutine within the DTEDIT3 program that accesses the
data base. Hence, it is the only subroutine that contains System 2000 (the
DBMS) PLEX commands. The data-base name that is used in some of the PLEX
statements should be changed.

Load Program

The Load Program consists of a main procedure, containing internal
subroutine-procedures, and three external subroutine-procedures. The program
loads 1-degree, 10-minute, 1-minute, and 6-second data; because of its modular
design, it can be easily expanded to accommodate other densities. One of the
only limitations on the program is that it expects to load entire 1-degree by
1-degree blocks of data at one time. The main procedure and its internal
subroutine-procedures will be discussed as one unit under the heading of
DTLOAD; the external subroutine-procedures will be discussed separately.

DTLQAD

The main portion of the program should work essentially unchanged. The
data-base name used in the System 2000 (the DBMS) PLEX commands should be
changed.

An array, called GRAPH, is declared in the main procedure. It is used
to produce graphics output for the report that is produced by each execution
of the program. It is dimensioned to reflect the latitude and longitude
extremes of the High Plains aquifer and has a position for each 1-degree by
1-degree block within and on the boundary of the aquifer. As a 1-degree by
1-degree block is loaded in the data base, an asterisk is placed in the GRAPH
array position corresponding to the 1-degree by 1-degree block. Dimensions of
this array would have to be changed for another study.

INITGR

This procedure initializes positions within the GRAPH array that
correspond to the boundary of the High Plains aquifer. The positions are set
to the letter '0'. This procedure would have to be completely changed for a
different study.

REPORT

This procedure outputs several lines of print that use the name of the
study unit; this would have to be changed for another study. The main output
are two figures which resemble the shape of the High Plains aquifer. The
first figure is produced using an array called EX-GRAPH which is dimensioned
exactly like GRAPH. It is initialized with the letters '0', 'P', and 'C'.
The '0' means that the 1-degree by 1-degree block corresponding to that
position is outside of the study area and the 'P 1 means that the block is
partially within the study area. The second figure is produced with the
GRAPH array. Each figure is surrounded by geographic coordinates that will
have to be changed for another study.

96

Retrieval Program

The Retrieval Program is written in IBM Fortran. As with the Edit
Program, the Retrieval Program requires a method of encoding and decoding
data. Because IBM Fortran does not have this feature, a routine called CORE
is used to provide this function. The sections of the code that use the CORE
subroutine should be changed. The program can remain written in Fortran, if
the available version has an encode/decode feature. If this feature is not
available, the program should be rewritten in a language that can provide the
feature. The program retrieves 1-degree, 10-minute, 1-minute, and 6-second
data. It can be expanded for other densities if desired.

MAIN

A password is required to open the data base. The password is
initialized within the program. This password should be changed and read
from the input. The data-base name used in some of the System 2000 (the DBMS)
PLEX commands should be changed. The program uses system subroutines to
compute date and time of the run; these subroutines may be different on
another system. An array, called DENTAB, relates the data density to the base
level of the data. It also relates the data density to the output record
types associated with the base level. This array would have to be modified if
more data densities are built into the data-base structure.

General-Update Program

The General-Update Program consists of a main procedure and eight
external subroutine-procedures. The program processes updates for 1-degree,
10-minute, 1-minute, and 6-second data. Because of it modular design, it can
be expanded for more data densities. The program should work with little or
no modification. In all cases, the main procedure and the subroutine
procedures use a data-base name in some of the System 2000 (the DBMS) PLEX
commands. This data-base name should be changed.

The program allows the user, usually the DBA, to change an existing
value to the MVI or to change an MVI-valued block to another value. This rule
can be changed if necessary.

Instant-Update Program

The Instant-Update Program consists of a main procedure and two external
subroutine-procedures. The program processes proposal records for 10-minute,
1-minute, and 6-second data. Because of its modular design, it can be easily
expanded for more densities. The program should work with little or no
modification.

There are several rules about adding test proposals that are incorporated
into the subroutine procedures UPDATE1 and UPDATE2. First, a test proposal
cannot be added for any block that already has five existing test proposals;
this number can be changed. Second, a test proposal cannot be added for a

97

block in which the permanent stored-value is the MVI. Conversely, the MVI
cannot be proposed as a test value. These rules were adapted for the High
Plains study; they are subject to change and the procedures easily can be
modified to incorporate any changes to these rules.

DTIUPD

A password is required to open the data base. This password is presently
initialized and should be changed. The data-base name used in some of the
System 2000 (the DBMS) PLEX commands should be changed.

UPDATE1

The data-base name used in some of the System 2000 PLEX commands should
be changed.

UPDATE2

The data-base name used in some of the System 2000 PLEX commands should
be changed.

Move Program

The Move Program consists of a main procedure and six external
subroutine-procedures. It manipulates the proposal records for 10-minute,
1-minute, and 6-second data. Because of its modular design, it easily can be
expanded if more densities are required. In the three subroutine procedures
that actually process the proposals (MOVE2, MOVES, and MOVE4), a rule is
implemented that states that any test proposal over 2 months old is removed
from the data base; this value of 2 months can be changed. The data-base
name used in some of the System 2000 (the DBMS) PLEX commands should be
changed.

Statistics Program

This program computes statistics for 1-degree, 10-minute, 1-minute, and
6-second data. Because of its modular design, the program can be easily
expanded to compute statistics for other data densities. The data-base name
used in the System 2000 (the DBMS) PLEX commands should be changed. No other
modifications are required.

Reload Program

The Reload Program consists of a main procedure and three external
subroutine-procedures. The program processes 10-minute, 1-minute, and 6-
second data. Because of its modular design, it can be easily expanded for
more data densities. The program should work with little or no modification.
There are two data-base names used in some of the System 2000 (the DBMS) PLEX
commands. These names should be changed.

98

Data-Transformation Program

The Data-Transformation Program is two separate computer programs; the
first program is called DTDTP and the second is called DTINTERP.

DTDTP

The DTDTP program consists of a main procedure, called DTDTP, and 18
subroutine procedures. The function of this program is to transform data
from the data base, which is in the form of (longitude, latitude, value)
triplets, into (X, Y, value) triplets. The program transforms 10-minute,
1-minute, and 6-second data. The program can be expanded to accommodate other
data densities. Two procedures within the DTDTP program require changes.

PREP4

The array LONDIS is used to estimate the number of 6-second values within
a model area. This array is dimensioned to reflect latitude extremes of the
High Plains aquifer. The array contains the distance (in miles) between
degrees of longitude as a function of latitude. This array will have to be
changed for a different study area. The variable MAXPOINTS is initialized to
1600 and it represents the maximum number of 6-second values within a model
area for which trend-surface analysis is a useful technique for determining
the model matrix. The initial value of this variable can be changed.

CORE

The array LONDIS is used in this subroutine procedure. It is the same
array as used by the PREP4 subroutine procedure. The same comments apply to
LONDIS as discussed for PREP4.

DTINTERP

The DTINTERP program consists of a main procedure and 5 subroutine
procedures. This program takes the transformed data from the first step and
generates the model matrix. There are three techniques available to generate
the matrix; because of its modular design, more techniques can be added if
desired. Only one of the procedures may require changes.

TREND

The order of the polynomial used to compute the trend surface cannot
exceed 4. This procedure would have to be rewritten to allow larger order
polynomials.

Data-Manipulation Program

The Data-Manipulation Program contains a pre-processor program called
GENFNCT. This program generates the source code for a function subroutine
that is used in the Data-Manipulation program to perform the mathematical
manipulations of the data-base formatted data. The function subroutine is -

99

called COMPUTE and its partial source code is stored in a disk file which is
read by the GENFNCT program. After the source code for COMPUTE is completed,
the function subroutine is compiled and linked with the remainder of the Data-
Manipulation Program.

The Data-Manipulation Program consists of a main procedure, 6 subroutine
procedures, and 1 function subroutine (COMPUTE). The program manipulates 10-
minute, 1-minute, and 6-second data. Because of its modular design, it can
be easily expanded to accommodate other data densities. The program should
work with little or no modifications.

Graphics Program

The Graphics Program consists of a main procedure and 11 subroutine
procedures. Although this program is written in PL/1, it calls 3 Fortran
subroutines for converting (longitude, latitude, value) triplets to (X, Y,
value) triplets using one of three map projections. This program is linked
to Calcomp software for producing contour maps and 3-D perspective plots. If
Calcomp software is not available, then two of the subroutine procedures will
have to be completely rewritten. The subroutine procedure GPCP1 generates
the commands for executing Calcomp's General Purpose Contouring Program
Version 1. The subroutine procedure TEREED, generates the commands to execute
Calcomps TEREED program Version 2. The Graphics Program will process
10-minute, 1-minute, and 6-second data. Because of its modular design, it can
be easily expanded to accommodate other data densities.

100

SUPPLEMENT IV: COMPUTER SOFTWARE TAPE

The computer software tape consists of 25 files of programs and
supporting files that are described and documented in this report. Each
computer program was placed in a separate file; the supporting files were
combined into related groups.

The magnetic tape is stored at the U.S. Geological Survey's National
Computer Center, Reston, Va.; additional information and copies of individual
files or the entire tape may be obtained from: Office of the Chief
Hydrologist, Water Resources Division, U.S. Geological Survey, Mail Stop 409,
National Center, 12201 Sunrise Valley Drive, Reston, VA 22092. The magnetic
tape can be identified by the number 224161 which is a number assigned by the
tape librarian for the Information Systems Division in Reston, Va.

Physical Characteristics of the Magnetic Tape

The physical characteristics of the magnetic tape were chosen to make
the tape compatible with a wide variety of computer systems. For example, the
density and block-size values are small so that the tape can be read using a
minicomputer or a microcomputer.

The magnetic tape has the following physical characteristics:

Tracks: 9
Density: 1600 BPI (bits per inch)
Labels: None
Record Length (Fixed): 80 bytes
Block Size: 2,000 bytes
Code: ASCII

The magnetic tape was processed on an Amdahl 470V/7 computer located at
the U.S. Geological Survey's National Computer Center in Reston, Va. Each
computer program or supporting file was initially stored as a sequential file
or member of a partitioned-data set on a disk-storage device. The files were
copied to the magnetic tape using an IBM utility program called IEBGENER.

Tape Contents

The files that are stored on magnetic-tape number 224161 can be divided
into four categories: (1) Source code for computer programs, (2) IBM Job
Control Language (JCL) for executing the programs, (3) files containing
variable declarations used by some of the computer programs, and (4)
miscellaneous information. Listed in table 2 are the files in the order in
which they were stored on the magnetic tape.

101

Table 2.--Data-base programs and supporting files

, Contents number

1 Edit Program for Load-Program input
2 Edit Program for Retrieval-Program input
3 Edit Program for Instant-Update Program input
4 Load Program
5 Load-Program subroutines
6 Retrieval Program
7 Retrieval-Program subroutines
8 Instant-Update Program
9 Instant-Update Program subroutines

10 Move Program
11 Statistics Program
12 General-Update Program
13 Reload Program
14 Data-Transformation Program
15 Data-Transformation Program subroutines
16 Interpolation Program
17 Data-Manipulation Program
18 Data-Manipulation Program subroutines and supporting programs
19 Graphics Program
20 Graphics Program subroutines and supporting programs
21 IBM procedures for programs that access the data base and the

	DBMS
22 IBM procedures for the data-application programs
23 Variable declarations for Fortran programs that access the data

	base and the DBMS
24 Variable declarations for PL/1 programs that access the data base

	and the DBMS
25 Miscellaneous

The computer programs (files 1 through 20 in table 2) can be divided into two
categories: (1) Programs that interact with the data base and the DBMS, and
(2) data-application programs. These programs were written in either Fortran
IV or PL/1.

Files 1 through 13 on magnetic-tape number 224161 contain the programs
that interact with the data base and the DBMS. These programs were linked to
System 2000 (the DBMS) through subroutines provided with System 2000. The
Edit and Retrieval Programs were written in Fortran IV. All other programs
in this group were written in PL/1.

Files 14 through 20 on magnetic-tape number 224161 contain the programs
that use data retrieved from the data base. All of these programs were
written in PL/1.

102

Files 21 and 22 on magnetic-tape number 224161 contain the procedures,
written in IBM JCL, to execute the computer programs. These procedures were
written to be used on the Amdahl 470V/7 computer in Reston, Va., and make
reference to files that are stored on a 3350-type disk-storage device. File
21 contains the procedures for executing the programs that access the data
base and the DBMS. File 22 contains the procedures for executing the data-
application programs.

Files 23 and 24 on magnetic-tape number 224161 contain the variable
declarations needed to link the programs in files 1 through 13 with the
System 2000 DBMS.

File 25 on magnetic-tape number 224161 contains the following
miscellaneous information: (1) A list of parameter names, (2) the data-base
definition in the form required by System 2000 (the DBMS), (3) the list of
error messages used by the Edit and Retrieval Programs, and (4) several short
files containing information needed by the IBM procedures for the programs
that access the data base and the DBMS. Most of the information in this file
would be needed only if the System 2000 DBMS was used to manage the
data base.

103
*U:S: GOVERNMENT PRINTING OFFICE: 1986-0-672-826/45298

